Рис. 72. При большей величине RC конденсатор Сне успевает полностью зарядиться между двумя изменениями напряжения.
Л. — Ты прав. Если еще увеличить RC, то выходное напряжение будет изменяться мало и выходной сигнал примет форму, изображенную на рис. 73.
Рис. 73. При дальнейшем увеличении произведения RC амплитуда выходного сигнала уменьшается.
Зубья пилы для пилки дерева
Н. — Смотри, твоя кривая состоит из прямых отрезков!
Л. — Так оно и есть. Выходное напряжение по сравнению с входным мало, и можно сказать, что напряжение на выводах резистора R в интервалах между переходами почти постоянное. Следовательно, зарядный (или разрядный) ток остается почти постоянным и конденсатор С заряжается (или разряжается) почти линейно. Чтобы ты мог лучше видеть форму напряжения на выходе, я увеличил масштаб полученной кривой по вертикали (рис. 74).
Рис. 74. Если выходной сигнал (рис. 73) вычертить в другом масштабе, четко видны почти равносторонние треугольники, напоминающие зубья пилы.
Н. — Странная форма, прямо как зубья пилы для пилки дерева.
Л. — Верно, по этой причине сигнал назвали «зубьями пилы» или «симметричным пилообразным сигналом». Его используют в тех случаях, когда нужно периодически и линейно изменять напряжение вверх и вниз. Это один из возможных случаев применения изображенной на рис. 70 схемы, которую называют интегрирующей.
Н. — Так вот почему ты не хотел сказать мне название схемы! Но скажи, пожалуйста, почему этим схемам дали такие жуткие названия.
Математические определения
Л. — Ну так, Незнайкин, ты сам захотел! Чтобы ответить на твой вопрос, необходимо хотя бы в самой общей форме объяснить, что такое производная и интеграл. Впрочем, это не очень разрядит твой мозг.
Функцией называют величину у , зависящую от другой величины х , которую называют переменной: каждому значению (причина) соответствует определенная величина у (следствие). Посмотри, как «реагирует» величина у на изменения переменной относительно заданного значения а . Иначе говоря, сравним изменения следствия с изменениями породившей их причины (рассчитав для этого коэффициенты этих изменений). Ответом может служить отклонение функции относительно точки а . Мы рассмотрим возможно малые изменения х относительно величины а , чтобы точнее установить, как ведет себя функция в окрестности величины а .
Как ты видишь, мы легонько «пощекочем» переменную (причину) и посмотрим, как это скажется на функции (следствии). Если следствие этого «щекотания» будет велико, мы скажем, что производная большая.
Если переменной служит время, а функцией — пройденным путь, то производной является скорость. Например, если для каждого момента известно место нахождения автомобиля на дороге, то мы можем рассчитать его скорость. Если в момент, который я обозначу t 0 , автомобиль находится в некотором месте, а в момент t 0 + 2 сек (т. е. 2 сек спустя) он находится на 30 м дальше, то я могу рассчитать его скорость, разделив прирост пройденного пути (30 м) на прирост времени (2 сек)
30 м: 2 сек = 15 м/сек (или 54 км/ч).
Следовательно, я могу сказать, что скорость в данном месте есть производная от пройденного пути по времени. Эта производная велика, когда пройденный путь быстро увеличивается с увеличением времени.
Дифференцирование с помощью схемы
Н. — Довольно туманно. Мне представляется, что это несколько напоминает схему на рис. 64. Если входное напряжение увеличивается быстро, то зарядный ток конденсатора С будет большой, что даст большое напряжение на выходе.
Читать дальше