Волны на воде можно также создавать, например, погружая в воду палку и ритмично, в такт с колебаниями воды, опуская и поднимая ее. И в этом случае волны будут затухающими. Но существовать они будут лишь до тех пор, пока мы не прекратим возмущать поверхность воды.
А как возникают колебания обычных качелей? Это ты хорошо знаешь: их надо подтолкнуть, вот они и будут качаться из стороны в сторону. Чем сильнее толчок, тем больше амплитуды колебаний. Эти колебания будут затухать, если не поддерживать их дополнительными толчками. Такие и многие другие подобные механические колебания мы видим. В природе же больше невидимых колебаний, которые мы слышим, ощущаем в виде звука. Не всегда, например, можно заметить колебания струны музыкального инструмента, но мы слышим, как она звучит. При порывах ветра в трубе возникает звук. Его создают колебательные движения воздуха в трубе, которые мы не видим. Звучат камертон, стакан, ложка, тарелка, ученическое перо, лист бумаги — они тоже колеблются. Да, юный друг, мы живем в мире звуков, потому что многие окружающие нас тела, колеблясь, звучат.
Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук этот — результат колебаний частиц воздуха, возбужденных колебаниями палки.
Проведи такой опыт. Оттяни струну, например, гитары, а потом отпусти ее. Струна начнет дрожать — колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснулся к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится звук затихнет. Рождение звука здесь — результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны. Распространяясь в воздухе со скоростью около 340 м/с, они несут в себе некоторый запас энергии. В тот момент, когда до ухода доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.
Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией — синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины — областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.
Мы живем и в мире электромагнитных колебаний, излучаемых электрическими приборами и всеми проводами, в которых течет переменный ток, огромным числом антенн радиостанций, атмосферными электрическими разрядами, недрами Земли и бесконечным Космосом. Только с помощью приборов, созданных человеком, они могут быть обнаружены и зафиксированы.
О ПЕРИОДЕ И ЧАСТОТЕ КОЛЕБАНИЙ
Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний является период время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5 с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.
Другим параметром, характеризующим колебания, является частота (от слова «часто») число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т. п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц — это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создаст тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т. е. совершают за 1 с 50 полных колебаний.
Читать дальше