Что же при этом происходит в каскаде, например, на транзисторе V1 усилителя первого или второго вариантов?
С повышением температуры общий ток коллекторной цепи увеличивается, вызывая все большее падение напряжения на нагрузочном резисторе R3 (см. рис. 174). Напряжение же между коллектором и эмиттером при этом уменьшается, что приводит к появлению искажений сигнала. При дальнейшем повышении температуры напряжение на коллекторе может стать столь малым, что транзистор вообще перестанет усиливать входной сигнал.
Уменьшение влияния температуры на ток коллектора возможно либо путем использования в аппаратуре, предназначенной для работы со значительными колебаниями температуры, транзисторов с очень малым током I КБО , например кремниевых, либо применением специальных мер, термостабилизирующих режим транзисторов.
Один из способов термостабилизации режима работы германиевого транзистора структуры р-n-р показан на схеме рис. 179, а . Здесь, как видишь, базовый резистор R б подключен не к минусовому проводнику источника питания, а к коллектору транзистора. Что это дает? С повышением температуры возрастающий коллекторный ток увеличивает падение напряжения на нагрузке R н и уменьшает напряжение на коллекторе. А так как база соединена (через резистор R б ) с коллектором, на ней тоже уменьшается отрицательное напряжение смещения, что в свою очередь уменьшает ток коллектора. Получается обратная связь между выходной и входной цепями каскада — увеличивающийся коллекторный ток уменьшает напряжение на базе, что автоматически уменьшает коллекторный ток. Происходит стабилизация заданного режима работы транзистора.
Но во время работы транзистора между его коллектором и базой через тот же резистор R б возникает отрицательная обратная связь по переменному току, что снижает общее усиление каскада. Таким образом, стабильность режима транзистора достигается ценой проигрыша в усилении. Жаль, но приходится идти на эти потери, чтобы при изменении температуры транзистора сохранить нормальную работу усилителя.
Рис. 179. Усилительные каскады с термостабилизацией режима работы транзисторов
Существует, однако, способ стабилизации режима работы транзистора с несколько меньшими потерями в усилении, но достигается это усложнением каскада. Схема такого усилителя показана на рис. 179, б . Режим покоя транзистора по постоянному току и напряжению остается тот же: ток коллекторной цепи равен 0,8–1 мА, отрицательное напряжение смещения на базе относительно эмиттера равно 0,1 В (1,5–1,4 = 0,1 В). Но режим устанавливается с помощью двух дополнительных резисторов: R б2 и R э . Резисторы R б1 , и R б2 образуют делитель, с помощью которого на базе поддерживается устойчивое напряжение. Эмиттерный резистор R э является элементом термостабилизации.
Термостабилизация режима транзистора происходит следующим образом. По мере возрастания коллекторного тока под действием тепла падение напряжения на резисторе R э увеличивается. При этом разность напряжений между базой и эмиттером уменьшается, что автоматически снижает коллекторный ток. Получается такая же обратная связь, только теперь между эмиттером и базой, благодаря которой режим транзистора стабилизируется.
Прикрой бумагой или пальцем конденсатор С э , подключенный параллельно резистору R э и, следовательно, шунтирующий его. Что теперь напоминает тебе эта схема? Каскад с транзистором, включенным по схеме ОК (эмиттерный повторитель). Значит, при работе транзистора, когда на резисторе R э происходит падение напряжения не только постоянной, но и переменной составляющих, между эмиттером и базой возникает 100 %-ная отрицательная обратная связь по переменному напряжению, при которой усиление каскада меньше единицы. Но так может случиться лишь тогда, когда не будет конденсатора С э . Этот конденсатор создает параллельный путь, по которому, минуя резистор R э , идет переменная составляющая коллекторного тока, пульсирующего с частотой усиливаемого сигнала, и отрицательная обратная связь не возникает. Емкость этого конденсатора должна быть такой, чтобы не оказывать сколько-нибудь заметного сопротивления самым низшим частотам усиливаемого сигнала. В каскаде усиления звуковой частоты этому требованию может отвечать электролитический конденсатор емкостью 10–20 мкФ.
Читать дальше