7.10. Стандартный измерительный усилитель на трех ОУ
Одним из недостатков описанной схемы с повторителями на рис. 7.31 является то, что в ней требуется большой КОСС и в повторителях, и в выходном ОУ. Поскольку входные буферные усилители работают с единичным усилением, все подавление синфазных помех должно происходить в выходном усилителе, что требует, как было указано, прецизионного согласования резисторов. Схема, изображенная на рис. 7.32 в этом смысле значительно лучше. Она представляет собой стандартную конфигурацию измерительного усилителя.
Рис. 7.32. Классический измерительный усилитель.
Входной каскад является удачным сочетанием двух ОУ, обеспечивающим большой дифференциальный коэффициент усиления и единичный коэффициент усиления синфазных сигналов без какого-либо особо точного согласования резисторов. Его дифференциальный выход представляет собой сигнал с существенно уменьшенной (относительно) синфазной составляющей и используется для возбуждения схемы обычного дифференциального усилителя. Последний часто бывает включен с единичным коэффициентом усиления, и его задача — получение однополюсного выходного сигнала и подавление остаточного синфазного сигнала. В результате отпадает надобность в том, чтобы выходной ОУ имел большой КОСС, и не требуется прецизионного согласования резисторов в схеме обвязки U 3 . Настройка нуля сдвига для всей схемы может быть сделана, как показано, на одном из входных ОУ. Эти входные ОУ должны, однако, иметь высокий КОСС, и выбирать их следует тщательно.
В виде гибридных ИМС измерительные усилители с описанной стандартной конфигурацией выпускаются несколькими фирмами. Все компоненты, кроме резистора R 1 , встроены, а коэффициент усиления устанавливается единственным внешним резистором R 1 . Типичными примерами таких модулей являются микромошный ΙΝΑ 102, высокоскоростной ΙΝΑ ПО и прецизионный AD624. У всех этих усилителей коэффициент усиления имеет диапазон от 1 до 1000, КОСС — около 100 дБ и входное полное сопротивление более 100 МОм. Микромощный гибридный модуль LH0036 может работать от такого низкого напряжения питания, как +1 В. AD624 имеет линейность коэффициента усиления около 0,001 %, начальный сдвиг напряжения менее 25 мкВ и дрейф напряжения сдвига не более 0,25 мкВ/°С; предусмотрена и возможность внешней настройки нуля напряжения сдвига. Некоторые измерительные усилители (например, высокоточный ΙΝΑ 104) имеют возможность регулировки КОСС. Не путайте эти модули с «измерительным операционным усилителем» 725, который представляет собой просто хороший ОУ, предназначенный для использования в схемах измерительных усилителей. На рис. 7.33 приведена полная схема измерительного усилителя, как она обычно строится.
Рис. 7.33. Измерительный усилитель с выводами защиты, измерительным и опорного напряжения.
Несколько замечаний об этой схеме измерительного усилителя: (а) Усиленный (по мощности) синфазный сигнал с выхода U 4 может быть использован как «защитное» напряжение для ослабления эффектов емкости кабеля и утечек. При таком включении защитный выход должен быть соединен с экраном входного кабеля. Если резистор установки коэффициента усиления ( R 1 ) не установлен непосредственно рядом с усилителем (существует отдельная панель регулировки — компоновка, которой следует избегать), то его (резистора R 1 ) соединения также должны быть экранированы и защищены, (б) Выводы ИЗМЕРЕНИЕ и ОПОРНЫЙ дают возможность измерять выходное напряжение непосредственно на нагрузке, так что благодаря обратной связи можно исключить потери в соединительных проводах, идущих к внешней схеме. К тому же ОПОРНЫЙ вывод позволяет смещать выходной сигнал постоянным напряжением (или другим сигналом); однако полное сопротивление между этим выводом и землей должно быть малым, иначе упадет КОСС. (в) Для всех такого вида измерительных усилителей необходимо формировать цепь для прохождения входного тока; нельзя, например, просто подсоединить к входу термопару. На рис. 7.34 показана простая схема включения ИМС измерительного усилителя с использованием выводов защиты входа, измерения и опорного.
Рис. 7.34. ИМС измерительного усилителя.
Читать дальше