Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заметки на полях

Еще один нюанс, дошедший до нас из древнегреческих времен, связан с тем, что греки и римляне не знали нуля. Именно поэтому первым годом нового века и тысячелетия считается 2001, а не 2000 год — год с двумя нулями относится к предыдущему столетию или тысячелетию — после последнего года до нашей эры (минус первого) идет сразу первый год нашей эры, а не нулевой. Однако именно нулевой логично считать первым, вдумайтесь: ведь когда мы говорим «первые годы XX века», мы имеем в виду именно 1903 или 1905, а не 1913 или 1915. Но древние греки были совсем не такие дураки и ноль игнорировали не по скудоумию. Дело в том, что в последовательности объектов, нумерованных от нуля до, например, девяти, содержится не девять предметов, а десять! Чтобы избежать этой путаницы, в быту обычно нумеруют, начиная с единицы, тогда последний номер будет одновременно означать и количество. В электронике же и в программировании обычно принято нумеровать объекты, начиная с нуля, и всегда следует помнить, что номер и количество различаются на единицу (так, в байте 256 возможных символов, но номер последнего равен 255). На всякий случай всегда следует уточнять, откуда ведется нумерация, иначе можно попасть в неприятную ситуацию (скажем, элементы строки в языке Pascal нумеруются с единицы, а в языке С — с нуля).

Десятичная и другие системы счисления

В десятичной системе (т. е. в системе с основанием р = 10) полное представление четырехразрядного числа, например, 1024 таково: 1∙10 3+ 0∙10 2+ 2∙10 1+ 4∙10 0.

Так как любое число в нулевой степени равно единице, то степень в младшем разряде можно и не писать, но ради строгости мы ее будем воспроизводить, так как это позволяет нам лучше вникнуть в одно обстоятельство: степень старшего разряда всегда на единицу меньше, чем количество разрядов (нумерация степеней ведется с нуля).

Ну, а как можно представить число в системе счисления с другим основанием? Для любой системы с основанием р нужно не меньше (и не больше) чем р различных цифр — то есть значков для изображения чисел. Для десятичной системы их десять — это и есть известные всем символы от 0 до 9. Выбор начертания этих значков совершенно произволен — так, у арабов и по сей день 1 обозначается, как и у нас, палочкой. А вот цифра 2 обозначается знаком, похожим на латинскую строчную «г», причем тройка тоже имеет похожее начертание, и я плохо себе представляю, как Усама бен Ладен их там отличает. Впрочем, это дело привычки, у нас тоже значки «5» и «6» в некоторых случаях различить непросто, не говоря уж о сходстве между нулем «0» и буквой «О». В ручном написании текстов программ, а также в матричных компьютерных шрифтах, которые были в ходу до появления графического интерфейса, для этого ноль даже изображали перечеркнутым, наподобие знака диаметра: « ». Попробуйте различить записи «150 м» и «150 м», если пробел забыли поставить в нужном месте — в случае матричных шрифтов или ручной записи, да и в любом случае, если символов «0» и «О» рядом не стоит, это неразрешимая задача, если только из контекста не ясно, когда идет речь об омах, а когда — о метрах.

Чтобы древним вавилонянам, несчастным, не приходилось выучивать аж 60 разных начертаний знаков, они придумали логичную систему наподобие римской (еще раз обратите внимание на рис. 7.4) — действующую, впрочем, только в пределах первых шестидесяти чисел, а далее у них система становилась аналогичной современным.

Самые употребительные системы счисления в настоящее время, кроме десятичной, связаны с электроникой и потому имеют непосредственное значение для нашего повествования. Это знаменитая двоичная система и менее известная широкой публике, но также очень распространенная шестнадцатеричная.

Двоичная система

В двоичной системе необходимо всего два различных знака для цифр: 0 и 1. Это и вызвало столь большое ее распространение в электронике: смоделировать два состояния электронной схемы и затем их безошибочно различить неизмеримо проще, чем три, четыре и более, не говоря уж о десяти.

Что очень важно на практике, двоичная система прекрасно стыкуется как с представленными в предыдущем разделе логическими переменными «правда» и «ложь», так и с тем фактом, что величина, могущая принимать два и только два состояния, и получившая названия бит, есть естественная единица количества информации — меньше, чем один бит, информации не бывает. Это было установлено в 1948 году одновременно упоминавшимся Клодом Шенноном и Нобертом Винером, «отцом» кибернетики. Разряды двоичных чисел (то есть чисел, представленных в двоичной системе) также стали называть битами. (Bit, bite — по-английски «кусочек, частица чего либо». На самом деле это случайное совпадение: слово «бит» возникло от сокращения Binary digiT — «двоичная цифра».)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x