Позиционные и непозиционные системы счисления
Из понятия числа, как объективно существующей абстракции, вытекает, что его материальное представление может быть произвольным, лишь бы оно подчинялось тем же правилам, что и сами числа. Проще всего считать палочками (и в детском саду нас учат именно такому счету), в качестве которых могут выступать и пластмассовые стерженьки, и пальцы, и черточки на бумаге. Один — одна палочка, два — две палочки, десять — десять палочек. А сто палочек? Уже посчитать затруднительно, поэтому придумали сокращение записи: доходим до пяти палочек, ставим галочку, доходим до десяти — ставим крестик:
1 2 5 7 10 11
I II V VII X XI
Узнаете? Конечно, это всем знакомая римская система, сохранившаяся до настоящих времен на циферблатах часов или в нумерации столетий. Она представляет собой пример непозиционной системы счисления, потому что значение определенного символа, обозначающего то или иное число, в ней не зависит от позиции относительно других символов — все значения в записи просто суммируются . Следовательно, записи «XVIII» и «IIIХV» в принципе Должны означать одно и то же. На самом деле это не совсем так: в современной традиции принято в целях сокращения записи учитывать и позицию символа: скажем, в записи «IV» факт, что палочка стоит перед галочкой, а не после нее, означает придание ей отрицательного значения, т. е. в данном случае единица не прибавляется, а вычитается из пяти (то же самое относится и к записи девятки «IX»). Если вы человек наблюдательный, то могли заметить, что на часах четверку пишут почти всегда, как «IIII, а не как «IV», что, несомненно, более отвечает духу непозиционной системы. Однако, при всех возможных отклонениях главным здесь остается факт, что в основе системы лежит операция суммирования .
Большие числа в римской системе записывать трудно. Поэтому были придуманы позиционные системы, к которым, в частности, принадлежала и упомянутая вавилонская шестидесятеричная (см. рис. 7.4).
Рис. 7.4. Вавилонские глиняные таблички с записью чисел. Вверху перевод некоторых из них в десятичную систему
Заметки на полях
В Европе позиционную систему переоткрыл (видимо) Архимед, затем от греков она была воспринята индусами и арабами, и на рубеже I и II тысячелетий н. э. опять попала в Европу [6] Перевод соответствующего трактата арабского ученого аль Хорезми на латынь относится к 1120 году (на самом деле его звали Мухаммед аль Хорезми, т. е. «Муххамед из Хорезма»; между прочим, от его прозвища произошло слово алгоритм).
— с тех пор мы называем цифры арабскими, хотя по справедливости их следовало бы назвать индийскими. Это была уже современная десятичная система в том виде, в котором мы ее используем по сей день, у арабов отличается только написание цифр. С тем фактом, что заимствована она именно у арабов, связано не всеми осознаваемое несоответствие порядка записи цифр в числе и привычным нам порядком следования текста: арабы, как известно, пишут справа налево. Поэтому значение цифры в зависимости от позиции ее в записи числа возрастает именно справа налево, что в европейском языке нелогично — приходится заранее обозревать число целиком и готовить ему место в тексте.
Позиционные системы основаны не на простом суммировании входящих в них цифр, а на сложении их с весами, которые присваиваются автоматически в зависимости от положения цифры в записи. Так, запись «3» и в римской системе, и в арабской означает одно и то же, а вот запись «33» в римской системе означала бы шесть, а в арабской — совсем другое число, тридцать три.
Строгое определение позиционной системы является следующим: сначала выбирается некоторое число р, которое носит название основания системы счисления . Тогда любое число в такой системе может быть представлено следующим образом:
а n р n+ а n-1 р n-1 + … + a 1 р 1+ a 0 p 0. (7.4)
В самой записи числа степени основания подразумеваются, а не пишутся (и для записи основания даже нет специального значка), т. е. запись будет представлять собой просто последовательность а n… а 0(обратим внимание на то, что запись производится справа налево по старшинству — обычная математическая запись выглядела бы наоборот). Отдельные позиции в записи числа называются разрядами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу