Для этой цели служит приспособление, показанное на рис. 3.44, а . Оно состоит из катушки индуктивности L1, понижающего трансформатора T1 и кнопочного выключателя SB1.
Электрическая схема соединений деталей приведена на рис. 3.44, б . Когда на катушку подают питающее напряжение, катушка создает переменное магнитное поле — оно и размагничивает инструмент.
Рис. 3.44. а) Приспособление для размагничивания инструмента б)схема устройства для размагничивания инструмента
Из плотной бумаги склейте каркас катушки толщиной 1,5…2 и длиной 80 мм. Внутренний диаметр каркаса 30…35 мм. По краям каркаса установите щечки толщиной 5…6 и диаметром 80 мм.
На каркас намотайте обмотку — примерно 1 000 витков провода ПЭЛ или ПЭВ диаметром 0,7…0,9 мм. Сопротивление такой обмотки будет около 8 Ом.
Понижающий трансформатор — любой конструкции, с напряжением на обмотке II 10…15 В при токе нагрузки до 2 А.
Включив установку в сеть, нажмите кнопку выключателя и введите внутрь каркаса катушки, например, отвертку. Подержите ее 10…15 с, а затем выключите установку. Если отвертка не успела размагнититься, операцию повторите.
При отсутствии намагниченных инструментов можете взять, скажем, толстый гвоздь, намагнитить его с помощью постоянного магнита, а затем размагнитить на установке. Индикатором степени намагниченности и эффекта размагничивания допустимо использовать компас.
3.7. ЗАДАЧИ
1. Сила тока в паяльнике 0,9 А при напряжении 220 В. Определите мощность тока в паяльнике и сопротивление обмотки паяльника.
2. Определите сопротивление электрической лампы, на баллоне которой написано: 220 В, 100 Вт.
3. У какой лампы сопротивление нити накала больше: мощностью 50 Вт или 100 Вт, если они рассчитаны на одинаковое напряжение?
4. Сопротивление какой цепи переменному току больше, во сколько раз и почему (рис. 3.45, а, б )?
Рис. 3.45. Сопротивление какой цепи переменному току больше, во сколько раз и почему?
5. При каких соотношениях Х Си X L(рис. 3.46, б ) в цепи будет резонанс напряжения (считать, что R < Х С, R < X L)?
Рис. 3.46. При каких соотношениях Х Си X Lв цепи будет резонанс напряжения
6. На рис. 3.47 показан трансформатор и приведены значения напряжений и сила токов во вторичных обмотках. Укажите все возможные варианты соединения вторичных обмоток трансформатора, величины напряжений и допустимую силу токов в полученных обмотках.
Рис. 3.47. Указать все возможные варианты соединения вторичных обмоток трансформатора
Глава 4
Полупроводниковые приборы
К полупроводникам относят вещества, занимающие по величине удельного электрического сопротивления (или проводимости) промежуточное положение между проводниками (металлами) и диэлектриками (табл. 4.1).
Характерным признаком полупроводников, выделяющим их в особый класс веществ, является сильная зависимость их электропроводности от концентрации примесей и энергетических воздействий (температуры, света и др.). Например, даже при небольшом повышении температуры проводимость полупроводников резко возрастает (около 5 % на ГС), тогда как у металлов проводимость снижается, причем незначительно (на десятые доли процента на ГС). Введение в полупроводник даже небольшого количества легирующих примесей (около 10 %) существенно увеличивает его проводимость. В электронике находит применение лишь ограниченное число известных полупроводников — германий, кремний, арсенид галия. Бор, фосфор, мышьяк и другие используют в качестве легирующих примесей. Большинство полупроводниковых диодов изготавливаются на основе кремния.
Полупроводники, применяемые в электронике, имеют монокристаллическую структуру. Это значит, что по всему их объему атомы размещены в строго периодической последовательности на определенных постоянных расстояниях друг от друга, образуя кристаллическую решетку. В такой идеальной кристаллической решетке все электроны связаны со своими атомами, поэтому такая структура не проводит электрический ток. Однако в полупроводниках сравнительно небольшие электрические воздействия (нагрев, облучение) приводят к отрыву некоторых электронов от своих атомов. Такие электроны называют электронами проводимости. Они перемещаются по кристаллической структуре и улучшают ее электропроводность. При уходе электрона из атома в кристаллической решетке образуется незаполненная связь (дырка). Ей присущ нескомпенсированный положительный заряд, равный по величине заряду электрона. Это приводит к хаотическому возникновению дырок в связях других атомов, что эквивалентно хаотическому перемещению положительных зарядов. При наличии внешнего электрического поля дырка будет двигаться в направлении, определяемом силами поля, в кристалле возникает электрический ток. Движение электронов и дырок в полупроводнике обуславливает его собственную электропроводность. Она мала, ее можно улучшить, вводя в монокристалл легирующие примеси. Практически не существует полупроводников с чисто электронной или чисто дырочной проводимостью. Электропроводность полупроводников определяется основными носителями заряда, концентрация которых намного больше концентрации неосновных носителей. По функциональным возможностям полупроводниковые приборы можно разделить на три основных класса: диоды, транзисторы и тиристоры.
Читать дальше