Сторонники обоих ученых разделяли механическую концепцию природы и считали, что они в состоянии изложить ее на математическом языке своей эпохи. Последователи Декарта опирались на соблазнительную картинку: все пространство заполнено либо твердой материей, либо жидкими телами — не всегда ощутимыми, любое движение должно происходить в форме турбулентного потока, вихря, а не по прямой линии.
Используя эту идею для описания небесной сферы, они представляли, что планеты вращаются вокруг Солнца, приводимые в движение огромными вихрями. В противовес этому последователи Ньютона отводили главенствующую роль Солнцу.
Именно эта звезда заставляла планеты вращаться вокруг нее благодаря гравитации — силе, навсегда запечатленной в законе земного притяжения.
Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тел и обратно пропорциональной квадрату расстояния между ними.
Закон всемирного тяготения Ньютона
Безусловно, декартовы вихри были несовместимы с большим количеством хорошо известных феноменов, но они позволяли объяснить движения с помощью физических воздействий. А вот загадочная сила притяжения, о которой говорил Ньютон и которая приводила в движение планеты, действовала на расстоянии, от Солнца, не прикасаясь к телам непосредственно. Было сложно не увидеть магии в этом дистанционном воздействии.
Лейбниц стал одним из самых знаменитых защитников декартовых вихрей. Немецкий философ и математик подчеркивал их гармоничный характер. Вихри и в самом деле позволяли объяснить, почему все известные планеты Солнечной системы и их спутники вращаются в одном направлении, следуя практически плоским траекториям. Все они словно погружены в общий вихревой поток и двигаются в одну сторону, с запада на восток, — словно корабли, отданные на милость течению.
Этот фундаментальный феномен, который Ньютон объяснить не мог, сторонники Декарта часто использовали в качестве аргумента, чтобы опровергнуть ньютоновы теории. Как мы увидим в главе 4, только Лаплас, выступавший на стороне Ньютона, сможет объяснить этот феномен с помощью своей космогонической теории газовой туманности.
Со временем идеи Ньютона понемногу возобладали, причем даже во Франции, где защита теории Декарта была национальной задачей. Именно во Франции приступили к основным проблемам небесной механики, в решение которых Лаплас сделал значительный вклад в последней четверти XVIII века.
АМБИЦИОЗНАЯ НАУЧНАЯ ПРОГРАММА:
НЕБО И ЗЕМЛЯ
Благодаря беспрецедентной интеллектуальной концентрации Ньютон написал «Начала» за 18 месяцев. В этом труде он изложил фундаментальные принципы «теоретической и рациональной» механики (как он ее называл), то есть науки о движении. Исходя из своего второго закона (сила равна массе, умноженной на ускорение) и первого закона Кеплера (планеты описывают орбиты в форме эллипса, в одном из фокусов которого находится Солнце), он вывел закон всемирного тяготения, который звучит следующим образом: «Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тел и обратно пропорциональной квадрату расстояния между ними». Сила притяжения увеличивается с массой, но уменьшается с расстоянием. «Начала» глубоко потрясли математический мир и мир натурфилософии. Новый закон одновременно объяснял движение планет и гравитационное притяжение тел к Земле.
Этот закон сразу очаровал Лапласа. Возможно, он тут же решил найти доказательство универсальности этого закона, поскольку он объяснял все небесные феномены без исключения.
Я надеюсь доказать, что небесные феномены, которые кажутся исключением из принципа тяготения, на самом деле являются его необходимым следствием.
Лаплас о законе всемирного тяготения Ньютона
Объединив все феномены в единую систему, Лаплас стремился описать новую картину Вселенной — полностью детерминистской. Однако его исследование не касалось исключительно Солнечной системы и небесной механики. Лаплас в равной мере и с той же целью обратил свой взгляд и на земную физику — чтобы найти несколько универсальных законов, которые управляют физическими, химическими и даже биологическими феноменами. И его второй важный вклад состоит в разработке основ теории вероятностей (ее мы рассмотрим в главе 5). Вероятность — это точка, в которой соединяются законы Вселенной и случайности человеческого познания.
Читать дальше