Carlos Casado - Вначале была аксиома. Гильберт. Основания математики

Здесь есть возможность читать онлайн «Carlos Casado - Вначале была аксиома. Гильберт. Основания математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: Де Агостини, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вначале была аксиома. Гильберт. Основания математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вначале была аксиома. Гильберт. Основания математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Вначале была аксиома. Гильберт. Основания математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вначале была аксиома. Гильберт. Основания математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В таких условиях Гёдель вышел из ситуации, составив формулу G, которая говорит сама о себе: «я недоказуемо». Эта формула стала примером неразрешимого утверждения внутри формальной системы: ни она, ни ее отрицание не являются теоремами, то есть чем-то доказуемым. Действительно, Іеделю удалось доказать, что G доказуемо тогда и только тогда, когда ¬G доказуемо. Следовательно, если мы хотим, чтобы формальная система была непротиворечивой, ни G, ни ¬G не могут быть таковыми. Если бы G было доказуемо, так как ¬G утверждает в метаматематических терминах, что G доказуемо (отрицает то, что оно недоказуемо, как сказано в нем самом), то было бы возможно доказать также ¬G и вывести противоречие (G^¬G). И наоборот, если бы ¬G было доказуемым, мы могли бы по той же причине доказать G и прийти к тому же противоречию. В итоге доказательство любой из этих двух формул автоматически предполагало бы противоречивость системы. Более того, если допустить, что формальная система непротиворечива, то G недоказуемо, но истинно. Если бы G было ложно, так как в G говорится: «я недоказуемо», то G было бы доказуемо, что невозможно. Следовательно, у нас есть высказывание G, которое, хотя и недоказуемо, является истинным.

Существование неразрешимого утверждения предполагает, что аксиомы теории не содержат ответа на все вопросы, формулируемые формальным языком, потому что ни утверждение, ни его отрицание не являются теоремами. И так как либо оно, либо его отрицание должно быть истинным, у нас есть истинная недоказуемая формула. Хуже всего, что если добавить неразрешимое утверждение в качестве аксиомы, появляются другие, новые. Математика вдруг очнулась от гильбертова сна — от мечты о полноте, в которой аксиоматические системы не содержат неразрешимых формул, а истинное всегда совпадает с доказуемым. Проще говоря, «непротиворечивый» предполагает «неполный», и наоборот, «полный» предполагает «противоречивый». Ни одна формальная система, содержащая привычную арифметику, не может быть одновременно и той и другой. Если мы предположим, что она непротиворечива, она всегда будет неполной, то есть будет содержать недоказуемые истины. Будут существовать некоторые истинные свойства формально неразрешимых чисел, то есть свойства, которые мы не можем ни доказать, ни отвергнуть на основе аксиом.

Но за первой теоремой о неполноте следует вторая: так как непротиворечивость равносильна утверждению, что формула 0≠0 недоказуема, Гёдель трансформировал это последнее математическое свойство в арифметическую формулу (назовем ее С) и заметил, что в первой теореме установлено, по сути, что «C→G». Непротиворечивость предполагает, что существует неразрешимое утверждение и, следовательно, неполнота. Так что доказательство С позволило бы нам исключить G из импликации «C→G» посредством modus ponens и, следовательно, доказать G, что невозможно, поскольку G недоказуемо. Это удивительное следствие сводится к тому, что непротиворечивость формальной системы, которая включает в себя арифметику, недоказуема в рамках формальной системы. Гёдель не доказал должным образом эту вторую теорему, он только высказался о ее приемлемости, но так никогда и не записал обещанного доказательства. Первое полное доказательство, очень тщательное, появилось, что любопытно, в 1939 году, во втором томе «Оснований математики» Бернайса и Гильберта.

Мало того, к синтаксическим ограничениям, которые открыл Гёдель, присоединилось другое ограничение — семантическое, формальных систем первого порядка: теорема, сформулированная Леопольдом Лёвенгеймом (1878-1957) и Туральфом Скулемом (1887-1963) около 1920 года (Скулем вернулся к ней в 1933 году). В 1930 году в рамках своего доказательства полноты логики первого порядка Гёдель мимоходом доказал, что любая непротиворечивая теория первого порядка имеет модель, в которой аксиомы проверяются, хотя и ничего не добавил о том, какие характеристики имеет эта модель и как ее построить. Лёвенгейм и Скулем до этого заметили, что любая непротиворечивая формальная система первого порядка имеет, по сути, счетную модель. Это порождает парадокс Скулема: если ZF непротиворечиво, то оно обладает счетной моделью. То есть несчетный континуум, которым мы намереваемся оперировать в ZF, может относиться к счетному множеству вне ZF. Теория действительных чисел, от которой мы ждем знакомой несчетной модели («настоящие» действительные числа), также имеет счетную модель.

ТЕОРЕМА ТАРСКОГО О НЕВЫРАЗИМОСТИ ИСТИНЫ

Альфред Тарский (1902-1993) считал себя лучшим из живущих математических логиков с ясным умом (чтобы избежать сравнения с Гёделем, страдавшим маниями и навязчивыми идеями).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вначале была аксиома. Гильберт. Основания математики»

Представляем Вашему вниманию похожие книги на «Вначале была аксиома. Гильберт. Основания математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Вначале была аксиома. Гильберт. Основания математики»

Обсуждение, отзывы о книге «Вначале была аксиома. Гильберт. Основания математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x