Carlos Casado - Вначале была аксиома. Гильберт. Основания математики

Здесь есть возможность читать онлайн «Carlos Casado - Вначале была аксиома. Гильберт. Основания математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: Де Агостини, Жанр: sci_popular, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вначале была аксиома. Гильберт. Основания математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вначале была аксиома. Гильберт. Основания математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Вначале была аксиома. Гильберт. Основания математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вначале была аксиома. Гильберт. Основания математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С эпохи Аристотеля, не забывая о вкладе схоластиков, логика задумывалась как учение о рассуждении, которое никогда не происходит в пустоте, а всегда в рамках какого-то языка. С течением времени математики обращали все большее внимание на логику языков, на которых они изъясняются, чтобы определить их возможности. Логика научила математиков тому, что в языке существует два основных понятия: одно — семантического характера, понятие истины, другое — синтаксического характера, понятие доказательства. Сложность заключалась в том, чтобы определить радиус их действия: совпадают ли эти два понятия экстенсионально, пусть они сильно различаются интенсионально. Другими словами, является ли все доказуемое истинным (правильность) и все истинное — доказуемым {полнота). В целом языку, богатому в плане выражения, соответствует логика, бедная на интересные свойства. Так, логика языков первого порядка является правильной и полной, но математику ее обычно не хватает в ежедневной работе (когда нужно количественно оценить свойства, а не только объекты).

Но не следует ожидать, что логика языков второго порядка или выше будет полной. Так что одно из двух: либо мы занимаемся математикой на маловыразительном языке, логика которого правильна и полна, либо мы формализуем наши математические рассуждения на выразительном языке, но логика, лежащая в его основании, в лучшем случае правильна (мы можем доказывать лишь истины), но не полна (мы не можем доказать все истины).

Гёдель — величайший логик со времен Аристотеля.

Джон фон Нейман о Гёделе

Ограничиваясь языком первого порядка (где можно давать количественную оценку только объектам), если мы будем толковать объекты как числа, мы едва ли уйдем дальше элементарной арифметики (например, теорема, утверждающая, что любое множество натуральных чисел обладает минимальным невыразимым элементом, поскольку нам придется давать количественную оценку множествам чисел) и никогда не доберемся до анализа. Проблема в том, что функции или числовые отношения не являются числами. Однако эта трудность испаряется, если мы рассматриваем множества, поскольку функции и отношения между множествами — это, в свою очередь, другие множества: я-ные собрания множеств — это множества.

Возникает важный вопрос: можно ли свести всю математику к теории множеств? Если истолковать объекты нашего языка первого порядка как множества, легко эмпирически убедиться, что большинство математических сущностей можно определить на основе множеств. Эта программа исследования основывалась на вышеупомянутой теории множеств ZF: на базе небольшого количества аксиом, сформулированных в первом порядке, эта теория множеств была способна охватить значительную часть математики того времени.

Снова, как в итоге понял Гёдель, цена этого теоретического богатства (выразимость) — метатеоретическая бедность, которая проявляется в нескольких ограничивающих результатах: теоремах о неполноте. В первой теореме доказывается, что существует истинная формула, которая недоказуема в ZF (хотя в работе Гёделя в качестве отправной формальной системы взят труд Рппсгрга mathematica, а его результаты справедливы для ZFи других смежных систем). А во второй — что невозможно доказать непротиворечивость ZF в ZF. Более того, доказательство в ZF отсутствия противоречия в ZF и, следовательно, в математике доказало бы исключительно, что ZF и математика противоречивы. Гёдель положил конец надежде на формализм Гильберта. Все усилия, направленные на доказательство непротиворечивости математики, обречены на провал. Точнее, невозможно доказать посредством финитных методов отсутствие противоречий любой формальной системы, содержащей арифметику Пеано (если позволить себе применение тяжелой артиллерии, непротиворечивость все-таки возможно доказать, как в 1936 году это сделал ученик Гильберта Герхард Генцен (1909-1945), хотя и посредством трансфинитных методов, очевидность которых спорная).

Кто из нас не возликовал бы, подними он занавес, за которым скрывается будущее, загляни он в последующие достижения науки и секреты ее развития?!

Давид Гильберт, из речи на II Международном конгрессе математиков в Париже

Парадокс лжеца был для Гёделя одним из двигателей доказательства теорем о неполноте. Поскольку доказательство было на грани перехода в цикличность, некоторые математики — в частности, 60-летний Цермело — не осознали его ценности. Гёдель придумал ловкий перевод на метаязык внутри языка: арифметизацию метаматематики. С помощью смелой цифровой кодификации, основанной на простых числах (которую с тех пор называют гёделизацией), он назначил номера знакам так, чтобы с каждой формулой (и также с каждым доказательством) можно было связать число, кодировавшее бы всю структуру. Пропозиции, в которых говорилось о свойствах формальной системы, выражались в рамках системы посредством арифметических формул. Доказуемость, например, была представлена в виде числового отношения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вначале была аксиома. Гильберт. Основания математики»

Представляем Вашему вниманию похожие книги на «Вначале была аксиома. Гильберт. Основания математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Вначале была аксиома. Гильберт. Основания математики»

Обсуждение, отзывы о книге «Вначале была аксиома. Гильберт. Основания математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x