Напротив, в точках орбиты, лежащих между афелием и перигелием, расстояние Марса от Солнца, а значит, и от почти круговой орбиты Земли, изменяется с наибольшей скоростью: в конце мая оно уменьшается, а в конце ноября возрастает. Поэтому наибольшее сближение Земли с Марсом в ноябре опережает момент противостояния, а в мае запаздывает относительно него.
Понятно, что эвакуироваться с поверхности удобно лишь в те моменты, когда базовый корабль проходит над местом посадки, что происходит, как сказано в проекте, с периодичностью P S= 2 час 26 мин.
Пусть H — высота орбиты над поверхностью планеты, а M и R — масса и радиус Марса. Тогда орбитальный период корабля
где
— первая космическая скорость (т. е. скорость движения по круговой орбите) на высоте H . Сама планета и находящаяся на ее поверхности экспедиция тоже вращаются с периодом, равным звездным (сидерическим) суткам Марса P 0= 24,623 часа. Если корабль движется в направлении вращения планеты, то частоту его обращения относительно поверхности (1/ P S) найдем как разность его орбитальной частоты (1/ P H) и частоты вращения планеты (1/ P 0):
Подставив все известные нам современные значения переменных, в ответе получаем H = 705 км. Как же так? Ведь должно было получиться ровно 1000 км. Неужели в середине XX в. плохо были известны масса и радиус Марса? Нет, они уже были измерены достаточно точно. Так неужели великий инженер В. фон Браун ошибся и допустил ошибку почти в 300 км? Невероятно! Ведь он был очень грамотный инженер и строил прекрасные ракеты. Быть может, он что-то не учел? Проверим. Если высота орбиты 1000 км, то каков будет ее период? P H= 2 час 25 мин. С точностью до секунды он совпадает с указанным фон Брауном! Значит, великий инженер просто вычислил орбитальный период базового корабля, но не учел вращение планеты. На самом деле корабль на высоте 1000 км будет пролетать над экваториальной базой с периодом
А вот вопрос, над которым Вернер фон Браун очевидно размышлял и пришел к правильному выводу: почему базовый корабль должен летать так высоко над Марсом. Будь он ближе к Марсу — чаще бы пролетал над экваториальной базой, и к нему легче было бы подняться на взлетной ступени. Например, МКС летает над Землей на высоте 400 км. Но фон Браун выбрал для своего корабля орбиту высотой 1000 км.
Даю подсказку: сила тяжести на Марсе в 2,6 раза слабее земной. Следовательно, атмосфера… Дальше подумайте сами.
Расстояние между Землей и Марсом изменяется от 0,5 а. е. в противостоянии до 2,5 а. е. в соединении. К тому же, после получения изображения, оператор должен отправить команду управления, поэтому время задержки реакции марсохода удваивается, доводя эффективное расстояние до 1÷5 а. е. Как известно, солнечный свет (а значит, и радиоволна) проходит расстояние в 1 а. е. за 500 секунд, значит, после появления препятствия на расстоянии 50 м от марсохода управляющая команда с Земли придет к нему через 500÷2500 секунд. Наихудший вариант — это 2500 секунд, следовательно, скорость аппарата при этой конфигурации Марса и Земли не должна превышать 50 м/2500 с = 2 см/с. В эпоху противостояния ее можно повысить до 10 см/с.
Используя 3-й закон Кеплера, гласящий, что квадраты периодов обращения планет пропорциональны кубам больших полуосей их орбит, найдем период астероида ( P ), сравнив его с орбитальным периодом Земли. Большая полуось орбиты астероида равна (1 + 9,5)/2 а. е. Поэтому
откуда P = 12 лет.
Мы видим, что перелет с Земли к Сатурну по самой выгодной траектории (полуэллиптической траектории Гомана — Цандера) должен продолжаться 6 лет. Однако космический зонд «Кассини» (NASA), ставший спутником Сатурна, был запущен с Земли 15 октября 1997 года, а прибыл к Сатурну 30 июня 2004 года, т. е. провел в пути 6 лет и 8,5 месяца. Как ему удалось нарушить законы небесной механики и с какой целью это было сделано? Разберитесь!
Читать дальше
Конец ознакомительного отрывка
Купить книгу