Если произошло событие А, то с помощью ящика «А» подсчитывается Р(А) – вероятность того, что снова произойдет А, Р(В) – вероятность того, что наступит событие В…, Р(К) – вероятность того, что наступит событие К. Это и есть вероятностный прогноз.
Предположим, что после этого наступило событие Y – событие, вероятность наступления которого, согласно прогнозу, равнялась P ( Y ). Теперь, как мы уже писали выше, следует поставить карточку Y в ящик А. Но карточка ставится с разным «весом» в зависимости от степени неожиданности события Y, она ставится с коэффициентом 1— P(Y).
Назовем эту величину коэффициентом неожиданности. Если в прошлом опыте после А всегда следовало Y, то Р ( Y ) = 1 (субъективная «модель среды» точно соответствует среде). Тогда 1— Р ( Y ) = 0, т. е. повторно наступившее событие Y не запоминается, не загружает память. В жестко детерминированной среде модель перестает запоминать, как только «научается» безошибочно прогнозировать ход событий. Но, если среда изменится и наступит не то событие, которое прогнозировалось, это событие врежется в память с максимальным коэффициентом неожиданности 1–0 = 1. Каждое событие запоминается тем сильнее (т. е. оказывается труднее забываемым), чем более неожиданным (удивительным) было возникновение его в данный момент.
Вероятности ожидания сигналов или ситуаций могут меняться от Р = 1 до очень маленьких величин. Всегда ли субъект учитывает все значения вероятностей или он может работать более экономно?
Можно предположить, что преднастройка осуществляется лишь по отношению к действиям, адекватным такой ситуации, возникновение которой прогнозируется с вероятностью, превышающей некоторую минимальную величину Р 0. Величина Р 0 играет роль абсолютного порога вероятностного прогноза. К ситуациям, появление которых прогнозируется с вероятностью меньшей, чем Р 0 преднастройка не осуществляется. Если Р 0= 1/10 (а из экспериментальных данных вытекает, что это примерно так), то при наличии равновероятных сигналов вероятностный прогноз достигает пороговой величины Р 0 лишь при числе сигналов до 10; при большем числе сигналов вероятностный прогноз появления каждого из них меньше порогового. Если же сигналы возникают с неодинаковыми вероятностями, то среди них могут оказаться сигналы с Р>0,1, но число таких сигналов будет всегда меньше 10 – независимо от общего числа сигналов. А это значит, что, как бы велико ни было число возможных сигналов, при наличии порога Р 0 организм упрощает ситуацию так, как будто число возможных сигналов не больше, чем 1/ Р 0 (т. е. не более 10 в приводимом примере). Наличие порога Р 0 позволяет при большом общем числе альтернатив принимать во внимание при прогнозировании лишь небольшую часть (не более 1/ Р 0 ) наиболее вероятных альтернатив.
Различие в подготовке к действиям на два сигнала наблюдается лишь тогда, когда различие прогнозируемой вероятности появления этих сигналов достаточно велико, больше некоторого Δ Р – дифференциального вероятностного порога. В частности, для выработки условного рефлекса выработка прогноза с Р = 1 не является необходимой (такая ситуация практически недостижима даже в эксперименте); достаточно, чтобы прогнозируемая вероятность подкрепления была близкой к единице ( Р ≥1– ΔР ).
Описанная структура памяти отражает лишь одну ее сторону, но именно ту, которая позволяет понять, как из прошлого опыта создается прогноз будущего, как осуществляется вероятностное прогнозирование.
Подготовка к действию и значимость сигнала
В приведенной выше структуре памяти в основу прогноза кладется частота (вероятность) возникновения событий и их сочетаний. При этом другие характеристики событий принимаются одинаковыми. Между тем ясно, что в действительности и преднастройка, и реакция субъекта на события сильнейшим образом зависят от значимости этого события для субъекта. Рассмотренная выше ситуация, когда все события принимаются как равные по значимости, является искусственной – удобной для первоначального исследования, но отличной от ситуации в реальной жизни. Очевидно, что сообщение о том, что этажом ниже возник пожар, вызовет совсем иную по силе и быстроте реакцию, чем сообщение о том, что этажом ниже ветер выбил стекло в окне – даже в том случае, если априорная вероятность этих сообщений одинакова. Равновероятные события могут вызвать очень различную преднастройку и различные реакции. Два разных субъекта различно реагируют на одну и ту же ситуацию даже при одинаковой неожиданности ее возникновения, если эта ситуация имеет для них различную значимость.
Читать дальше