Виктор Аллахвердов - Методологическое путешествие по океану бессознательного к таинственному острову сознания

Здесь есть возможность читать онлайн «Виктор Аллахвердов - Методологическое путешествие по океану бессознательного к таинственному острову сознания» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2003, ISBN: 2003, Издательство: Издательство Речь, Жанр: Психология, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Методологическое путешествие по океану бессознательного к таинственному острову сознания: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Методологическое путешествие по океану бессознательного к таинственному острову сознания»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

С разных сторон рассматривается самое загадочное явление человеческой психики - сознание. Как разгадать его тайну? Как распутать коварные головоломки и разрешить вечные проблемы, над которыми бились лучшие умы человечества? В книге предлагается оригинальный подход к тайне сознания.

Методологическое путешествие по океану бессознательного к таинственному острову сознания — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Методологическое путешествие по океану бессознательного к таинственному острову сознания», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математика исторически появляется в рамках мистического познания, когда посвященные начинают дарить своим ученикам свет Истины. Они учат их выводить из заведомо очевидных, а, следовательно, Истинных высказываний (аксиом) по заведомо очевидным Истинным правилам вывода новое Истинное знание и, тем самым, описывают, как они полагают, Истинную гармонию мира. Не случайно математика и музыка оказываются отождествленными в головах античных ученых, да и в некоторых современных тоже. [321] Лосев А.Ф. Музыка как предмет логики. // Лосев А.Ф. Форма, стиль, выражение. М., 1995, с.405-602. Неожиданно выясняется, что полученный в итоге результат может и не обладать свойством очевидности. Пифагорейцы, например, были потрясены идеей иррациональных чисел. Существование таких чисел заранее ими никак не предполагалось, они казались невероятными. Потому и знакомство с теоремой Пифагора было даровано только посвященным. Однако мудрые греки, несмотря даже на субъективную непредставимость иррациональности, признали эти числа истинными.

Так родилась норма: если все преобразования делать правильно, то и независимый от осуществляющего их мудреца результат преобразований будет правильным, даже если он будет казаться непонятным. Архимед был потрясен тем, что объём шара, вписанного в цилиндр, в точности равен 2/3 объёма цилиндра. Разве можно было об этом догадаться? Ошеломленный Архимед даже завещал поставить эти фигуры на свою могилу – как говорят, это и было выполнено римлянами, правда, после того, как во время штурма Сиракуз они убили великого математика. [322] Любищев А.А. Наука и религия. СПб., 2000, с.238. А вот, например, оригинальный результат, полученный Л. Эйлером: сумма ряда +1–1+1–1+1–1+1–1…= 1/2 (для доказательства надо было увидеть, что ряд представляет собой геометрическую прогрессию, где каждый следующий член ряда получается умножением предыдущего на –1). Этот результат выглядит совсем непонятным? [323] Стили в математике: социокультурная философия математики. СПб., 1999, с.256. Что ж, чем субъективно неожиданнее, тем интереснее. Так появляется специфическая интеллектуальная игра (интереснее шахмат и Олимпийских игр), победителем в которой выступает тот, кто раньше других обнаружит неведомое. Считается, что Фалес был первым, кто превратил математику (геометрию) в такую игру. А. Шопенгауэр в какой-то мере был прав, когда назвал геометрическое доказательство мышеловкой. [324] Цит. по: Блэк М. Метафора. // Теория метафоры. М., 1990, с.161.

Отход математики от мистического обоснования с помощью требования субъективной очевидности всех проводимых операций протекал долго и болезненно. Лишь в XIX в. стало появляться предчувствие, что единственно Истинных аксиом и несомненно достоверных Истинных правил вывода вообще не существует. Но тогда в принципе можно придумывать любые аксиомы и создавать любые правила игры. Создание новых логических и математических структур – это есть лишь создание правил новых математических игр, где одни признанные аксиоматически правильными высказывания преобразуются в другие. Математика сродни мифотворчеству, – утверждал великий математик ХХ в. Г. Вейль. [325] Вейль Г. Симметрия. М., 1968, с.8. «Аксиомы, – признавался А. Эйнштейн, – свободные творения человеческого разума». [326] Эйнштейн А. Собр. соч., т.2, М., 1966, с.84. Важно лишь, чтобы и аксиомы, и правила для самих играющих были однозначны и не приводили в итоге к противоречию. Ведь если один игрок играет по одним правилам, а другой – по другим, или если один игрок одновременно должен делать два разных, не совместимых друг с другом действия, то игры не получится. Играющий в преферанс в принципе не способен выиграть у человека, играющего в этот момент в подкидного дурака, в шашки или в биллиард. Нельзя ни назвать какую-либо одну из игр верной, ни оценить, кто из игроков, играющих в разные игры, играет лучше. Так и в логико-математических науках – оценке подлежит только одно: может ли данное высказывание быть получено из заданной системы аксиом путем тавтологических преобразований (т.е. преобразований по заданным правилам) самих этих аксиом. В этих науках нет и не может быть критерия оценки истинности высказывания как достоверного высказывания об окружающем мире, есть только критерий оценки правильности, корректности высказывания.

Сами по себе разные игры отнюдь не обязательно должны быть согласованы между собой и взаимно непротиворечивы. Соответственно разных математических структур может быть много, и они вполне могут противоречить друг другу. Сами математики тоже осознали это далеко не сразу. Творцы неэвклидовой геометрии К.Ф. Гаусс и Н.И. Лобачевский еще не могли допустить возможность существования множества равно корректных геометрий и хотели понять, какая из геометрий более правильная. [327] Овчинников Н.Ф. Методологические принципы в истории научной мысли. М., 1997, с.147-158. А математически менее просвещенная публика видела в создании не знакомой им эвклидовой, а какой-то иной геометрии просто сплошную дурь. Вот пишет Н.Г. Чернышевский: "Лобачевского знала вся Казань. Вся Казань единодушно говорила, что он круглый дурак" И делает показательный вывод: "Это смех и срам серьезно говорить о вздоре, написанном круглым дураком". [328] Чернышевский Н.Г. Избранные философские сочинения. М., 1938, с.508. Да, ладно! Чернышевский хотя и был ярым проповедником мифа о естественных науках, но сам же признавался, что не знает и не хочет знать ни самих этих наук, ни математику. Специалистам лишь спустя почти столетие после создания неэвклидовой геометрии стало понятно, что могут развиваться совершенно разные математические структуры, просто применяться они должны к разным задачам. Г. Минковский в начале ХХ в. создал псевдоэвклидовую геометрию. В ней дополнительным к обычной эвклидовой геометрии и не противоречащим её аксиомам правилом – новой аксиомой – было утверждение о существовании не менее двух прямых, которым запрещено проходить через каждую точку. В итоге оказалось, что хотя в этой странной геометрии не верна теорема Пифагора, но зато она хорошо подходит к описанию специальной теории относительности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Методологическое путешествие по океану бессознательного к таинственному острову сознания»

Представляем Вашему вниманию похожие книги на «Методологическое путешествие по океану бессознательного к таинственному острову сознания» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Методологическое путешествие по океану бессознательного к таинственному острову сознания»

Обсуждение, отзывы о книге «Методологическое путешествие по океану бессознательного к таинственному острову сознания» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x