– Не адаптированы к российской экономике,
– Не учитывается финансовая устойчивость предприятия,
– Не учитывается процесс кризиса на предприятии.
Рейтинговые (балльные) модели являются эффективным средством финансового мониторинга деятельности предприятий с точки зрения вероятности риска банкротства. Отличительная особенность рейтинговых моделей заключается в том, что показатели при финансовых коэффициентах получаются либо с помощью математических операций, либо задаются экспертно. Рейтинговая модель является адекватным отражением риска банкротства предприятия [18].
Следует заметить, что в настоящее время применяются рейтинговые системы оценки финансового состояния предприятия двух видов. Первый вид предполагает классификацию предприятий на несколько групп, границы которых заранее установлены аналитиками и экспертами. Для применения этой методики достаточно бухгалтерской отчетности от одного предприятия. К данному типу можно отнести методики Донцовой, Никифоровой, Литвина, Графова [19], методику Сбербанка для оценки кредитоспособности заемщика [20] и другие [21, 22]. Из зарубежных методов на практике широко применяется метод Аргенти (А-счет) [23].
Второй тип методик определения рейтинга предприятия базируется на сравнении финансовых коэффициентов с эталонным предприятием. Роль эталона выполняет фирма, у которой имеются наилучшие результаты из всей выборки исследуемых предприятий. Сюда можно отнести методики Кукуниной И. Г. [24], Шеремета А. Д. [25].
Среди альтернативных методов, построения моделей можно выделить следующие: нейросетевые методы, нечеткую логику, самоорганизующиеся карты, генетические алгоритмы и эволюционное программирование.
В сравнении со статистическими моделями, модели, основанные на искусственном интеллекте, эффективно работают с нечетко определенными, неполными и неточными данными. Существенным недостатком при построении интеллектуальных моделей диагностики риска банкротства предприятий выступает большая трудоемкость их разработки. Помимо этого разработка модели осложняется необходимостью анализа большой выборки данных о предприятиях, которой в молодой российской экономике пока еще недостаточно для создания адекватной модели диагностики риска банкротства предприятий.
В пользу статистических моделей высказывается Альтман в своей работе [26], где доказывает, что logit-модели и дискриминантный анализ точнее предсказывают банкротство предприятия, нежели нейронные сети.
В работах [27] авторы приходят к выводу, что logit-модель работает намного лучше, нежели сложные интеллектуальные системы раннего предупреждения (EWS-модели), к примеру, алгоритмы распознавания образов.
Все это приводит к тому, что разработка моделей диагностики риска банкротства на основе искусственного интеллекта, в условиях развивающейся экономики, сложно реализуема, поэтому акцент в диссертационной работе сделан на статистических моделях.
Качественные методы диагностики риска банкротства
Качественные методы диагностики риска банкротства предприятий не предполагают расчет интегральных показателей риска, в их основе, как правило, лежит использование экспертных знаний, опросов, коэффициентного анализа. Качественные методы оценки риска банкротства предприятия можно условно разделить на две основные группы: коэффициентный анализ, где анализ предприятия основывается на вычислении и анализе финансово-хозяйственных коэффициентов, описывающих деятельность предприятия с различных углов и аналитическийоснованный на традиционном анализе бухгалтерской отчетности.
В России на данный момент большинство систем мониторинга деятельности предприятий основывается на коэффициентном анализе. К примеру, Федеральный закон «О несостоятельности (банкротстве)» предлагает расчет некоторых финансовых коэффициентов для диагностики риска банкротства. Тем не менее, как показывает практика, коэффициентный анализ не направлен на оценку вероятности риска банкротства и не дает возможности предприятию применить антикризисные мероприятия. Можно выделить следующие недостаткикоэффициентного анализа:
– множественность предлагаемых наборов коэффициентов в финансовом анализе, которая затрудняет оценку состояния предприятия на их основе, а также выработку и реализацию управленческих решений.
– сложность обоснованного нормирования коэффициентов. Одна из проблем коэффициентного анализа заключается при интерпретации коэффициентов с точки зрения выбранных нормативов. В российских условиях база нормативных документов по оценке финансового состояния предприятия еще недостаточно развита, доступ к среднеотраслевым нормативам зачастую ограничен. Необходимо отметить, что алгоритмы расчета коэффициентов у различных исследователей разнятся. Помимо этого контрольные нормативы не отражают отраслевой специфики предприятия.
Читать дальше