1 – секреция ренина почками в ответ на снижение внутрипочечного давления; 2 – секреция ангиотензиногена печенью; 3 – отщепление ренином декапептида от ангиотензиногена, высвобождение ангиотензина I; 4 – ангиотензин I; 5 – синтез ангиотензинпревращающего фермента (АПФ) в легких и почках; 6 – преобразование ангиотензина I в ангиотензин II под воздействием АПФ, который отщепляет от него две последние аминокислоты; 7 – ангиотензин II; 8 – сосудосуживающая активность ангиотензина II, за счет которой растет центральное давление; 9 – стимуляция гипофиза ангиотензином II, в результате чего происходит секреция антидиуретического гормона (АДГ); 10 – АДГ; 11 – стимуляция АДГ выброса альдостерона надпочечниками; 12 – альдостерон. 13 – альдостерон задерживает воду и повышает проницаемость мембран клеток, за счет чего увеличивается объем циркулирующей крови и растет кровяное давление
Избыточный синтез одного из участников цепочки РААС в печени (ангиотензиногена), к примеру, приводит к повышенной жесткости тканей сердца – в результате чрезмерного синтеза белков матрикса фибробластами. В итоге работа сердца сильно страдает 73, 74, 75, 76, 77. Это происходит следующим образом: активация рецептора к ангиотензину II AT1, который представлен на поверхности клеток многих тканей (сердце, почки, нервная система и др.), вызывает избыточные ответы в кардиомиоцитах и синтез белка внеклеточного матрикса фибробластами сердца.
В фибробластах сердца ангиотензин II повышает синтез коллагена, фибронектина, ламинина и остеопонтина. Гладкомышечные клетки сосудов, стимулированные ангиотензином II, демонстрируют увеличение количества мРНК коллагена, фибронектина, ламинина и тенасцина.
Решение вышеописанных проблем уже проглядывается: опыты на животных показали, что фармакологическое ингибирование компонентов РААС приостанавливает разрастание компонентов матрикса, приводящее к фиброзу, а значит, и патологические процессы в тканях сердца 78.
В почках ангиотензин II стимулирует синтез коллагенов, фибронектина и ламинина мезангиальными клетками 78, 79.
Способность ангиотензина II стимулировать продукцию TGF-β [14] TGF-β – цитокин, участвующий в клеточной дифференцировке и пролиферации, иммунном ответе, играет важную роль в регуляции сборки и ремоделирования внеклеточного матрикса. Он стимулирует экспрессию коллагенов, фибронектина и протеогликанов и выработку протеаз, ингибирующих распад матрикса.
, одного из главных профиброзных факторов, связывают с развитием возрастной сосудистой гипертрофии.
Постоянная активация рецепторов TGF-β приводит к аномальному накоплению соединительной ткани в почках и сосудах, ведущему к фиброзным патологиям 80, 81, 82.
Кроме того, продукция TGF-β может индуцироваться при увеличении количества рецепторов RAGE [15] Рецепторы RAGE (Receptor for Advanced Glycation Endproducts) – иммунные рецепторы из семейства иммуноглобулинов. Они активируются в ответ на взаимодействие с КПГ (они как раз и есть те самые Advanced Glycation Endproducts, или AGE), амилоидами и продуктами клеточной гибели. RAGE-рецепторы обильно экспрессируются в жировой ткани и участвуют в регуляции передачи сигналов от инсулина. Существует гипотеза, что первоначальная роль RAGE-рецепторов гоминидов была связана с формированием экономного фенотипа с ускоренным набором жировой массы, что спасало от голодной смерти 87 . RAGE, как сейчас известно, участвуют в развитии почти всех возрастных патологий, включая диабет обоих типов 88 , хроническое заболевание почек 89 , сердечно-сосудистые заболевания 90 , рак, болезни Альцгеймера и Паркинсона 91, 92, 93 .
83. Повышение экспрессии этого цитокина может быть прямым следствием процессов гликирования. Возможно, если получится изобрести препарат, «отменяющий» гликирование, вред от избытка TGF-β тоже снизится 84, 85, 86.
Таким образом, жесткость почки (за счет синтеза коллагена) растет как напрямую от воздействия ангиотензина II, так и в результате продукции TGF-β. Также запускается очередной порочный круг (на этот раз не только в почках, но и в сосудах): от роста количества КПГ (которые для матрикса и есть сшивки) растет уровень TGF-β, который еще сильнее ускоряет разрастание соединительной ткани.
Митохондрии и матрикс – продолжение истории
Митохондрии находятся внутри клетки, матрикс – снаружи. Поэтому работа митохондрий и матрикса тесно связана друг с другом посредством цитоскелета.
Для обновления белков основных структур цитоскелета (микрофиламенты, промежуточные филаменты, микротрубочки) требуется энергия аденозинтрифосфата (АТФ). Поэтому митохондрии в клетке постоянно двигаются, собираясь в местах, где высока потребность в АТФ 94. В свою очередь, правильная организация скелета клетки важна для нормального функционирования митохондрий – они тесно взаимодействуют с ним, чтобы поддерживать свою морфологию. Ангиотензин II, о котором мы говорили выше, нарушает нормальную организацию цитоскелетных филаментов, что негативно сказывается на работе митохондрий 94.
Читать дальше