Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Здесь есть возможность читать онлайн «Александр Петров - Гравитация. От хрустальных сфер до кротовых нор» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Фрязино, Год выпуска: 2013, ISBN: 2013, Издательство: Array Литагент «Век», Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. От хрустальных сфер до кротовых нор: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. От хрустальных сфер до кротовых нор»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Гравитация. От хрустальных сфер до кротовых нор — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. От хрустальных сфер до кротовых нор», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Решить уравнения Эйнштейна – это значит найти коэффициенты g ab . Но гравитационные уравнения должны решаться вместе с уравнениями для материи, состояние и движение которой также должны стать известными, как результат найденного решения. Также часто решают гравитационные уравнения в вакууме, то есть для областей пространства-времени, где нет материи. Тогда задачей является определить только метрику g ab , анализ которой даст всю информацию об искривлении пространства-времени, его геодезических и т. д. Решение уравнений ОТО с бо́льшими деталями обсуждается в Дополнении 4.

После того как решение уравнений ОТО найдено, необходимо обратиться к принципам соответствия, которые были определены в конце предыдущего параграфа. Первый из них касается соответствия теории гравитации Ньютона. Принцип звучит четко и довольно жестко. Но так и должно быть, если мы не хотим ошибиться в интерпретации решений новой теории. Теория Ньютона в данном случае играет роль критерия.

Уже сейчас очень полезно для последующего изложения записать простые формулы этого соответствия. Мы уже говорили, что гравитация Ньютона представлена скалярным полем (потенциалом) φ. Для точечной массы M (или сферически распределенного вещества) скалярное поле вне вещества определяется как φ= – GM / r , где r – расстояние до центра тела. Тогда сила, действующая на тело массы m в этом потенциальном поле, определяется стандартной формулой закона всемирного тяготения:

Движение тел в таком поле хорошо изучено Как найти соответствие с движением - фото 44

Движение тел в таком поле хорошо изучено. Как найти соответствие с движением тел в ОТО? Для этого нужно найти пространство-время, геодезические которого, в приближении малых скоростей и слабого поля φ, соответствуют движению тел в теории Ньютона. Такое пространство-время легко находится, его метрика в обсуждаемом приближении имеет в сферических координатах простую форму:

В силу сферической симметрии мы опустили угловую часть оставив только - фото 45

В силу сферической симметрии мы опустили угловую часть, оставив только временную и радиальную. Эту метрику иногда называют метрикой «пространства-времени Ньютона». Здесь g 00= 1 + 2j/ c 2= 1–2 GM / rc 2. Если нет тяготеющего центра, т. е. масса M = 0 , то поле φ исчезает и метрика обращается в метрику пространства Минковского.

Этим мы отметили соответствие для движения тел в теории Ньютона и ОТО. Но также необходимо показать, что для слабых гравитационных полей и малых скоростей уравнения релятивистской теории гравитации должны перейти в уравнения гравитации Ньютона. Но что такое уравнения тяготения Ньютона ? Очевидно, что это должны быть уравнения для поля φ. Здесь приходится идти обратным путем. Мы знаем, какое поле создается каждой отдельной частицей. Если у нас имеется произвольное распределение плотности вещества ρ в пространстве, то для каждой точки нужно выписать соответствующее значение φ. А общее поле Φ в каждой точке пространства просто сложится из всех отдельных φ. Тогда получится, что поле Φ в каждой точке удовлетворяет уравнению:

Оказывается что при всех ограничениях соответствия уравнения ОТО - фото 46

Оказывается, что при всех ограничениях соответствия уравнения ОТО, действительно, сводятся к этому единственному уравнению.

Но на проблему связи между теориями можно посмотреть и с другой позиции. Сила Ньютона – это обычная сила, которая растягивает пружину динамометра, давит на поверхность Земли, держит, как на «цепочках» (или «резинках»), планеты в Солнечной системе. В ОТО ситуация другая. Представим, что нас одарили «божественной» способностью воспринимать искривленное пространство-время. При этом мы в состоянии фантастически осознать, где там проходят геодезические (по аналогии с тем, что нашего реального восприятия достаточно, чтобы оценить, что шайба, брошенная по гладкой поверхности катка, движется равномерно и прямолинейно). Тогда для нас понятие гравитационной силы исчезло бы вообще. Все заменилось бы геометрией. Вместо воображаемых «цепочек», на которых Солнце «тащит» планеты, мы увидели бы нечто, похожее на воронку, в которой планеты свободно (по инерции) обращаются вокруг Солнца (рис. 6.3). Если какой-нибудь планете придать достаточно большую скорость, то она «выскочит» из воронки (а на языке гравитации Ньютона – преодолеет солнечное притяжение) и улетит в космос. Проявление же силы тяготения в быту мы интерпретировали бы как препятствие движению по геодезическим. Так, и пружина динамометра, и поверхность Земли, препятствуют такому движению.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. От хрустальных сфер до кротовых нор»

Представляем Вашему вниманию похожие книги на «Гравитация. От хрустальных сфер до кротовых нор» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Петров - Дочь генерала
Александр Петров
Александр Петров - Меморандум
Александр Петров
libcat.ru: книга без обложки
Александр Петров
Геннадий Ерофеев - Диггер «кротовых нор»
Геннадий Ерофеев
Александр Бакулин - Гравитация и эфир
Александр Бакулин
Александр Петров - Россия - Жизнь взаймы
Александр Петров
Александр Петров - Пленник
Александр Петров
Александр Петров - Мой дворец
Александр Петров
Александр Петров - Созерцатель
Александр Петров
Отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор»

Обсуждение, отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x