Очевидно, что индекс массы тела не является точным индикатором состояния здоровья ни на одном из концов шкалы. Вместо этого было бы полезно знать процентное содержания жира в организме, которое самым тесным образом связано с кардиометаболическими последствиями для здоровья. Для этого нам необходимо заимствовать идею 2000-летней давности из древнего города-государства Сиракузы на острове Сицилия.
•
Примерно в 250 году до нашей эры царь Сиракуз Гиерон II обратился к выдающемуся математику древности Архимеду, жившему там же, с просьбой помочь решить спорный вопрос. Король поручил ювелиру сделать для себя корону из чистого золота. Получив готовую корону, Гиерон, наслышанный о не самой безупречной репутации ювелира, заподозрил, что мастер обманул его, использовав сплав золота и какого-то другого, более дешевого и более легкого металла, чтобы присвоить образовавшийся «излишек». Архимеду поручили выяснить, смошенничал ли ювелир при этом ему запретили брать пробу металла или каким-то иным образом портить корону.
Прославленный математик понял, что для решения проблемы ему необходимо будет рассчитать плотность короны. Если корона окажется менее плотной, чем чистое золото, значит, ювелир обманул. Плотность чистого золота он вычислил легко, подсчитав объем золотого бруска правильной формы, а затем взвесив его, чтобы получить массу. Деление массы на объем давало плотность. Пока все шло хорошо. Если бы Архимед мог просто повторить ту же процедуру с короной, он просто сравнил бы две плотности. Взвесить корону было просто, но трудности возникли при попытке определить ее объем – корона имела сложную, неправильную форму. Эта проблема поставила Архимеда в тупик на некоторое время. Как-то он решил пойти в баню. Войдя в наполненную до краев ванну, он заметил, что часть воды выплеснулась. Погрузившись в ванну, он понял, что объем воды, перелившейся за край полностью заполненной ванны, будет равен погруженному в воду объему его тела, которое тоже имело неправильную форму. Он мгновенно ощутил, что наткнулся на метод определения объема, а следовательно, и плотности короны. Витрувий рассказывает, что Архимед был так рад своему открытию, что выскочил из ванны и побежал голым и мокрым по улице с криком «Эврика!» («Нашел!») – таков был его момент истины.
Даже сегодня архимедов метод «вытеснения» применяется для расчета объема объектов неправильной формы. Если вы подумываете о том, чтобы погрузиться в здоровый образ жизни, метод Архимеда поможет вам вычислить, какой объем смузи вы получите, перетерев в блендере набор овощей и фруктов неправильной формы. Или же, вдохнув полной грудью и выдохнув как можно сильнее в пустой герметичный мешок, затем запечатав его и погрузив в воду, при помощи архимедова принципа вы можете оценить, какой стала емкость ваших легких после нескольких недель тренировок по новой программе.
К сожалению, несмотря на полезность метода вытеснения, описанного в популярном пересказе истории, вряд ли Архимед на самом деле решал эту проблему таким образом. Для этого объем вытесненной короной воды надо было измерять с точностью, которая по тем временам была недостижима. Скорее всего, Архимед использовал схожую идею из гидростатики, которая позже станет известна как принцип Архимеда.
Этот принцип гласит, что объект, помещенный в текучую среду (жидкость или газ), подвергается воздействию выталкивающей силы, эквивалентной весу жидкости, которую он вытесняет. Иными словами, чем погруженный объект больше, тем больше жидкости он вытесняет и, следовательно, тем большему воздействию выталкивающей силы, компенсирующей его вес, он подвергается. Это объясняет, почему огромные грузовые суда не тонут, если совокупный вес корабля и его груза меньше, чем вес воды, которую они вытесняют. Этот принцип также тесно связан с таким качеством, как плотность – отношение массы предмета к его объему. Объект, плотность которого больше плотности воды, весит больше воды, которую он вытесняет, поэтому выталкивающей силы не хватит для того, чтобы поддерживать его на плаву, противодействуя его весу, – и этот объект утонет.
В этих рамках задача Архимеда сводилась к тому, чтобы уравновесить на простых рычажных весах корону на одной чашке и исходную массу чистого золота на другой. На воздухе весы были бы сбалансированы. Однако, если эти весы погрузить в воду, на фальшивую корону выталкивающая сила воздействовала бы сильнее (в силу того что по объему та превосходила бы равную ей массу более плотного золота и, следовательно, вытесняла бы больше воды), так что чашка с фальшивой короной всплывала бы выше, чем чаша с золотом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу