Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Здесь есть возможность читать онлайн «Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, ISBN: 2019, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возьмем, к примеру, человека, зараженного вирулентным штаммом гриппа. Если за неделю, столкнувшись с 20 восприимчивыми к вирусу людьми, он заразит четверых из них, то значение базового показателя репродукции заболевания R 0составит 4. У каждого восприимчивого человека шанс заразиться составляет один к пяти. Это демонстрирует, как показатель репродукции зависит от размера восприимчивой популяции. Если бы наш больной гриппом в течение недели, во время которой он остается носителем вируса, встречался только с десятью восприимчивыми к инфекции людьми (как на средней схеме на рис. 24), то при той же вероятности передачи он заразил бы в среднем только двоих, понизив реальный коэффициент репродукции вдвое – с 4 до 2.

Наиболее эффективный способ сокращения численности восприимчивого населения – вакцинация. Количество человек, которых нужно вакцинировать для достижения популяционного иммунитета, определяется задачей сделать реальный коэффициент репродукции ниже единицы. Если бы мы смогли вакцинировать 3/4 популяции, то (как в схеме справа на рис. 24) из первоначальных 20 контактов нашего больного гриппом, только 1/4 (то есть пятеро) все равно были бы восприимчивы к инфекции. Из них в среднем заразился бы только один. Неслучайно этот критический порог вакцинации для достижения популяционного иммунитета к заболеванию с базовым показателем репродукции 4 требует вакцинации трех четвертей (то есть 1 минус 1/4) населения. В целом для достижения порога коллективного иммунитета мы можем позволить себе оставить 1/R 0популяции без вакцинации и должны защитить ее оставшуюся долю (1 минус 1/R 0популяции). При оспе, базовый показатель репродукции которой составляет около 4, мы можем позволить себе оставить четверть (то есть 25 %) популяции незащищенной. Вакцинации 80 % (на 5 % выше 75-процентного критического порога иммунизации для обеспечения буфера) восприимчивого к оспе населения в 1977 году хватило для того, чтобы совершить одно из величайших достижений нашего вида – стереть одну из человеческих болезней с лица Земли. Повторить этот подвиг не удалось.

Изнурительные и опасные последствия оспы сами по себе сделали ее подходящей мишенью для искоренения. Низкий критический порог иммунизации сделал ее еще и относительно легкой мишенью. От многих других болезней защититься сложнее, так как они распространяются легче. Ветряная оспа, с оценочным R 0около 10, для эффективной защиты всего человечества – и последующего искоренения болезни потребовала бы иммунизировать 9/10 населения Земли. Корь – безусловно, самая заразная болезнь человека на Земле, с оценочным R 0от 12 до 18 – потребует вакцинации от 92 до 95 % населения. Исследование, смоделировавшее распространение вспышки кори в Диснейленде в 2015 году, в ходе которой заразился Мёбиус Луп, позволило предположить, что уровень вакцинирования среди лиц, подверженных этому заболеванию, мог составлять до 50 % – намного ниже порога, необходимого для обеспечения популяционного иммунитета [198].

Госпожа MMR

С момента введения в 1988 году в Англии вакцинирования против кори с помощью комбинированной прививки кори, свинки и краснухи (MMR [199]) ее масштаб неуклонно рос. В 1996 году уровень вакцинирования достиг рекордно высокой отметки в 91,8 %, что близко к критическому порогу иммунизации для ликвидации кори. Затем, в 1998 году, произошло нечто, что могло бы подорвать процесс иммунизации на многие годы.

Эта катастрофа в области общественного здравоохранения была вызвана не болезнями животных, плохой санитарией или даже неудачными решениями правительства, а мрачной пятистраничной публикацией в уважаемом медицинском журнале Lancet [200], [201]. В статье ведущий автор Эндрю Уэйкфилд предположил, что вакцина MMR может вызывать у детей аутизм. На основе своих «изысканий» Уэйкфилд повел пропагандистскую кампанию против вакцины, заявив на пресс-конференции: «Я не могу поддержать использование комбинированной вакцины, пока этот вопрос не будет решен». Большинство ведущих СМИ заглотили наживку.

Заголовки газеты Daily Mail, посвященные этой истории, вопили: «MMR убила мою дочь», «Страхи перед MMR обоснованы», «MMR безопасна? Чушь! Главный скандал еще впереди». За годы, последовавшие за публикацией Уэйкфилда, история разрослась, став самой популярной научной темой Великобритании 2002 года. Потакая многочисленным родительским страхам, СМИ, как правило, не упоминали, что исследование Уэйкфилда касалось всего 12 детей – группы слишком маленькой, чтобы на основе полученных данных делать столь широкомасштабные выводы. Любое публичное сомнение в адекватности исследования заглушали сирены паникерства, звучавшие со стороны большинства новостных агентств. В результате родители стали отказываться от вакцинирования детей. За десять лет, последовавших за печально известной публикацией в Lancet, охват населения, привитого MMR, снизился с более 90 % до менее 80 %, а количество подтвержденных случаев заболевания корью выросло с 56 в 1998 году до более чем 1300 десятью годами позже. Также резко участились случаи заболевания свинкой, которая на протяжении 1990-х годов встречалась все реже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Представляем Вашему вниманию похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Кит Маккарти - Тихий сон смерти
Кит Маккарти
Отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Обсуждение, отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x