ИГРА, КОТОРУЮ НИКТО НЕ В СИЛАХ ОБЪЯСНИТЬ
Каким образом лучшие мастера го ориентируются в безумной сложности игры и делают хорошие ходы? Никто не знает, даже сами игроки. Они изучили некоторый набор эвристических приемов и стараются их придерживаться [10] Многие эвристические приемы в го весьма расплывчаты – например, «не используйте плотность для занятия территории».
. Но этим все и ограничивается – даже мастера часто затрудняются объяснить свою стратегию. Майкл Редмонд, один из немногих игроков неазиатского происхождения, достигших высшего ранга в игре, поясняет: «Я вижу ход и уверен в его правильности, но я не могу сказать вам точно, как я это узнаю. Я просто вижу» [11] Levinovitz, “Mystery of Go.”
.
Дело не в том, что игроки в го косноязычны. Просто у всех нас нет полного доступа к собственным знаниям. Когда мы распознаем чье-то лицо или едем на велосипеде, мы не способны четко объяснить, как и почему делаем то или другое. Трудно изложить скрытое знание. Такое состояние прекрасно описал Майкл Полани [12] Майкл Полани (1891-1976) – британский физик, химик и философ венгерского происхождения. Процитированные слова связаны с его концепцией «личностного знания». Прим. перев .
: «Мы знаем больше, чем способны рассказать».
Парадокс Полани, назовем его так, был серьезным препятствием для всех, кто попытался построить компьютер, играющий в го. Как написать программу, основанную на оптимальных стратегиях игры, когда никто из людей не в силах сформулировать стратегии? Можно запрограммировать некоторые эвристические правила, но это не обеспечит победу над сильными игроками, выходящими за их рамки, но не способными объяснить, как они это делают.
Чтобы ориентироваться в сложных средах, например во всех возможных позициях игры го, разработчики часто опираются на моделирование. Они пишут программы, которые делают ход, выглядящий хорошим, затем исследуют все разумные ответы противника на него, все разумные ответы на каждый такой ответ и так далее. В конечном счете обычно выбирается тот ход, что обеспечивает больше всего хороших вариантов и меньше всего плохих. Однако из-за того, что существует такое огромное количество возможных партий в го – так много вселенных, ими полных, – у вас получится смоделировать ничтожно малую их долю, будь у вас хоть цех, полный суперкомпьютеров.
Вследствие недоступности ключевых знаний и неэффективного моделирования прогресс у программистов, занимавшихся го, шел медленно. Давая характеристику нынешней ситуации с компьютерами, играющими в го, и ожидаемым перспективам, профессор философии Алан Левиновиц заключил в мае 2014 года в журнале Wired: «Может оказаться, что появление в течение десяти лет компьютера-чемпиона – слишком оптимистичный прогноз» [13] Levinovitz, “Mystery of Go.”
. Статья в Wall Street Journal, написанная в декабре 2015 года профессором психологии Крисом Чабрисом, ведущим в журнале колонку об играх, называлась «Почему го по-прежнему не дается компьютерам».
ПРЕОДОЛЕНИЕ ПАРАДОКСА ПОЛАНИ
В научной статье, опубликованной буквально в следующем номере Wall Street Journal (в январе 2016 года), рассказывалось о компьютере, который уже нельзя одурачить. Группа из лондонской компании DeepMind, принадлежащей Google и специализирующейся на машинном обучении (эту область искусственного интеллекта мы обсудим в главе 3), опубликовала статью «Освоение игры го с помощью нейронных сетей и поиска по дереву» [14] David Silver et al., “Mastering the Game of Go with Deep Neural Networks and Search Trees,” Nature 529 (2016): 484–89, http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html .
, и престижный журнал Nature сделал ее темой номера. Статья описывала программу AlphaGo, которую создатели научили играть в го, обойдя парадокс Полани.
Они не пытались напичкать программу лучшими стратегиями и эвристическими правилами. Вместо этого они создали систему, самообучающуюся в ходе анализа игровых позиций во множестве партий. AlphaGo должна была замечать в большом количестве данных мельчайшие паттерны и связывать действия игроков, например постановку камня на конкретное место, с результатами, скажем с выигрышем [15] В этой книге, говоря о технологиях, мы будем употреблять слова, которые обычно обозначают человеческие действия: «замечать», «изучать», «видеть» и т. п. Мы считаем, что это правильный способ передать происходящее, хоть компьютеры и не мыслят как люди. Мы отдаем себе отчет, что этот прием непопулярен в определенных кругах, где принято считать: «Не надо очеловечивать компьютеры – им это очень не нравится».
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу