Коллектив авторов - На плечах гигантов

Здесь есть возможность читать онлайн «Коллектив авторов - На плечах гигантов» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент АСТ, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

На плечах гигантов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «На плечах гигантов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа. Именно эти работы и эти идеи изменили направление научной мысли, а более ранние – ознаменовали переход от Средневековья к современности.
Выдержки из оригинальных текстов дополнены комментариями Стивена Хокинга, который составил также биографический очерк для каждого из авторов, чтобы читатель мог проследить глобальную эволюцию астрофизических воззрений и ход мыслей частного гения.

На плечах гигантов — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «На плечах гигантов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
На плечах гигантов - изображение 128

и для энергии (в случае покоя)

На плечах гигантов - изображение 129

Из выражений для импульса следует, что играет роль инертной массы. Так как m – константа, связанная с точечной массой и независящая от положения этой массы, то при соблюдении условия, установленного для определителя, это выражение на пространственной бесконечности обращается в нуль только тогда, когда А стремится к нулю, а В стремится к бесконечности.

Рассмотренное поведение метрических коэффициентов g μν представляется нам как бы следствием относительности всякой инерции. Отсюда следует также и тот факт, что потенциальная энергия m√B точки на бесконечности становится бесконечно большой. Точечная масса никогда не может покинуть систему. Более детальное исследование показывает, что то же самое справедливо и для лучей света. Вселенная при таком поведении потенциала гравитационного поля на бесконечности не подвергалась бы опасности стать пустой, на что указывалось при обсуждении ньютоновской теории.

Упрощенные допущения о гравитационном потенциале, которые лежат в основе этих рассуждений, введены только для большей наглядности. Для описания поведения g μν на бесконечности можно найти общую формулировку, которая выразит суть без всяких ограничивающих допущений.

Пользуясь дружеской помощью математика Громмера, я исследовал центрально-симметричное статическое гравитационное поле, которое выражается на бесконечности указанным образом. Из заданного потенциала гравитационного поля g μν на основе уравнений гравитационного поля был вычислен тензор T μν энергии материи. Однако при этом оказалось, что для звездной системы подобного рода граничные условия никак не могут быть приняты. Недавно это вполне справедливо было отмечено также астрономом де Ситтером. Действительно, контравариантный тензор T μ энергии весомой материи имеет вид

где ρ означает естественно измеренную плотность материи При надлежащем выборе - фото 130

где ρ означает естественно измеренную плотность материи.

При надлежащем выборе координатной системы скорости звезд очень малы по сравнению со скоростью света. Поэтому ds можно заменить на На плечах гигантов - изображение 131. Таким образом, все компоненты тензора T μν очень малы по сравнению с последней его компонентой, T 44 . Однако это условие никак нельзя совместить с выбранными граничными условиями. После всего изложенного такой результат не вызывает удивления. Факт незначительности звездных скоростей позволяет заключить, что всюду, где имеются неподвижные звезды, потенциал гравитационного поля (в нашем случае √ В ) не может быть существенно больше, чем у нас. Последнее следует из статистических соображений так же, как и в теории Ньютона. Во всяком случае, наши вычисления привели меня к убеждению, что подобные условия вырождения для g μ ν в пространственной бесконечности не могут быть постулированы.

Неудача этой попытки указывает на две возможности: а) требовать, как в случае планетной проблемы, чтобы на пространственной бесконечности g μν при надлежащем выборе системы координат стремились к значениям

или б не устанавливать для пространственной бесконечности никаких - фото 132

или б) не устанавливать для пространственной бесконечности никаких фиксированных граничных условий. В каждом отдельном случае следует особо задавать g μ ν на пространственной границе рассматриваемой области так же, как мы привыкли это делать до сих пор, задавая начальные условия.

Возможность «б» не соответствует какому-либо решению проблемы. Она означает отказ от ее решения. Правомерность такой точки зрения нельзя отрицать – в настоящее время ее придерживается де Ситтер [18]. Но я должен признаться, что мне трудно было бы пойти на столь большие уступки в этом принципиальном вопросе. С этим я соглашусь только в том случае, если все усилия найти удовлетворительные граничные условия окажутся тщетными.

Возможность «а» неудовлетворительна во многих отношениях. Во-первых, такие граничные условия предполагают определенный выбор системы отсчета, что несовместимо с духом принципа относительности. Во-вторых, эта возможность ведет к отказу от требования относительности инерции. Действительно, инерция материальной точки с естественно измеренной массой m зависит от g μ ν , но последние лишь очень мало отличаются от постулированных значений на пространственной бесконечности. Благодаря этому, несмотря на то что материя (находящаяся на конечном расстоянии) влияет на инерцию, но все-таки не обусловливает последнюю. Если бы существовала только одна материальная точка, то она, согласно этому представлению, обладала бы почти такой же инерцией, как и в том случае, когда она окружена всеми прочими массами нашего реального мира. Наконец, против этого представления нужно выдвинуть те же статистические возражения, которые выше были указаны для теории Ньютона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «На плечах гигантов»

Представляем Вашему вниманию похожие книги на «На плечах гигантов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Феликс Ройзенман - На плечах гигантов
Феликс Ройзенман
Отзывы о книге «На плечах гигантов»

Обсуждение, отзывы о книге «На плечах гигантов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x