Из указанных соображений становится ясно, что построение общей теории относительности должно одновременно привести и к построению теории тяготения, потому что гравитационное поле можно «создать» простым изменением координатной системы. Кроме того, очевидно, что принцип постоянства скорости света в пустоте должен быть изменен, ибо легко убедиться в том, что траектория луча света относительно системы К’ в общем случае должна быть кривой, если свет относительно системы К распространяется прямолинейно и с определенной постоянной скоростью.
§ 3. Пространственно-временной континуум. Требование общей ковариантности уравнений, выражающих общие законы природы
Так же как и в специальной теории относительности, в классической механике пространственные и временные координаты содержат непосредственный физический смысл. Когда говорят, что точечное событие имеет координату x 1 , то это означает следующее. Построенную по правилам евклидовой геометрии при помощи твердых стержней проекцию точечного события на ось X 1 получают, откладывая определенную линейку – единичный масштаб – х 1 раз от начала координат по направлению оси X 1 . Когда говорят, что точка имеет координату х 4 = t , то это означает, что по часам (некоторому эталону времени), покоящимся относительно координатной системы, пространственно (практически) совпадающим с точечным событием и выверенным по определенным правилам, прошло х 4 = t периодов, когда наступило точечное событие 10.
Такое понимание пространства и времени всегда представлялось взору физиков, хотя, быть может, большей частью и бессознательно. Это ясно видно из той роли, какую играют эти понятия в физических измерениях. Такое толкование читатель должен был положить также в основу второго рассуждения последнего параграфа для того, чтобы придать ему некоторый смысл. Однако мы покажем теперь, что это толкование нужно отбросить и заменить более общим, чтобы последовательно провести общий постулат относительности, при условии, что специальная теория относительности сохраняется в предельном случае отсутствия гравитационного поля.
Введем в пространстве, свободном от гравитационных полей, галилееву координатную систему К(х, у, z, t) и, кроме того, координатную систему К’(х’, у’, z’, t’) , которая равномерно вращается относительно К . Пусть начала координат обеих систем, так же как и их оси Z , все время совпадают друг с другом. Покажем, что вышеприведенные определения, касающиеся физического смысла длин и времен, не пригодны для изучения пространства и времени в системе К’ .
Из соображений симметрии очевидно, что окружность в координатной плоскости XY системы К с центром в начале координат может в то же время рассматриваться как окружность в координатной плоскости X’Y’ системы К’ . Теперь представим себе, что длина и диаметр этой окружности измерены при помощи единичного масштаба (бесконечно малого по сравнению с радиусом) и затем взято отношение обоих результатов измерения. Если выполнить этот эксперимент с масштабом, покоящимся относительно галилеевой системы К , то в качестве частного получится число π. Результатом измерения, выполненного с масштабом, покоящимся относительно системы К’ , будет число большее π. В этом легко убедиться, если судить о процессе измерения из «покоящейся» системы К и принять во внимание, что масштаб, приложенный по касательной к окружности, претерпевает лоренцево сокращение, а радиально приложенный масштаб не изменяется. Поэтому относительно системы К’ геометрия Евклида оказывается несправедливой. Установленное нами ранее представление о координатах, которое предполагает применимость евклидовой геометрии, оказывается непригодным в системе К’ . Также невозможным оказывается и введение в К’ удовлетворяющего физическим требованиям времени, которое показывали бы одинаковые часы, покоящиеся относительно К’ . Для того чтобы в этом убедиться, представим себе, что в начале координат и где-нибудь на окружности установлено двое одинаковых часов, наблюдаемых из «покоящейся» системы К . Далее, согласно известному выводу специальной теории относительности, наблюдение по часам в системе К дает, что часы, установленные на окружности, идут медленнее часов, которые помещены в начале координат, поскольку первые движутся, а последние нет. Наблюдатель, который находится в общем начале координат и который способен, пользуясь светом, наблюдать часы, находящиеся на окружности, обнаружит, что часы, установленные на окружности, идут медленнее, чем часы, установленные рядом с ним. Поскольку наблюдатель не решится считать скорость света на пройденном светом пути явной функцией времени, то он объяснит свое наблюдение тем, что часы на окружности «действительно» идут медленнее часов, установленных в начале координат. Таким образом, он будет вынужден дать времени такое определение, которое указывало бы, что скорость хода часов зависит от места.
Читать дальше