Ray Kurzweil - How to Create a Mind - The Secret of Human Thought Revealed

Здесь есть возможность читать онлайн «Ray Kurzweil - How to Create a Mind - The Secret of Human Thought Revealed» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2012, ISBN: 2012, Издательство: Penguin, Жанр: Прочая научная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

How to Create a Mind: The Secret of Human Thought Revealed: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «How to Create a Mind: The Secret of Human Thought Revealed»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ray Kurzweil, the bold futurist and author of The New York Times bestseller The Singularity Is Near, is arguably today’s most influential technological visionary. A pioneering inventor and theorist, he has explored for decades how artificial intelligence can enrich and expand human capabilities.
Now, in his much-anticipated How to Create a Mind, he takes this exploration to the next step: reverse-engineering the brain to understand precisely how it works, then applying that knowledge to create vastly intelligent machines.
Drawing on the most recent neuroscience research, his own research and inventions in artificial intelligence, and compelling thought experiments, he describes his new theory of how the neocortex (the thinking part of the brain) works: as a self-organizing hierarchical system of pattern recognizers. Kurzweil shows how these insights will enable us to greatly extend the powers of our own mind and provides a roadmap for the creation of superintelligence—humankind's most exciting next venture. We are now at the dawn of an era of radical possibilities in which merging with our technology will enable us to effectively address the world’s grand challenges.
How to Create a Mind is certain to be one of the most widely discussed and debated science books in many years—a touchstone for any consideration of the path of human progress.

How to Create a Mind: The Secret of Human Thought Revealed — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «How to Create a Mind: The Secret of Human Thought Revealed», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

I described the technique above using vectors with only two numbers each, but working with sixteen-element vectors is entirely analogous to the simpler example. Because we chose vectors with sixteen numbers representing sixteen different frequency bands, each point in our system was a point in sixteen-dimensional space. It is difficult for us to imagine a space with more than three dimensions (perhaps four, if we include time), but mathematics has no such inhibitions.

We have accomplished four things with this process. First, we have greatly reduced the complexity of the data. Second, we have reduced sixteen-dimensional data to one-dimensional data (that is, each sample is now a single number). Third, we have improved our ability to find invariant features, because we are emphasizing portions of the space of possible sounds that convey the most information. Most combinations of frequencies are physically impossible or at least very unlikely, so there is no reason to give equal space to unlikely combinations of inputs as to likely ones. This technique reduces the data to equally likely possibilities. The fourth benefit is that we can use one-dimensional pattern recognizers, even though the original data consisted of many more dimensions. This turned out to be the most efficient approach to utilizing available computational resources.

Reading Your Mind with Hidden Markov Models

With vector quantization, we simplified the data in a way that emphasized key features, but we still needed a way to represent the hierarchy of invariant features that would make sense of new information. Having worked in the field of pattern recognition at that time (the early 1980s) for twenty years, I knew that one-dimensional representations were far more powerful, efficient, and amenable to invariant results. There was not a lot known about the neocortex in the early 1980s, but based on my experience with a variety of pattern recognition problems, I assumed that the brain was also likely to be reducing its multidimensional data (whether from the eyes, the ears, or the skin) using a one-dimensional representation, especially as concepts rose in the neocortex’s hierarchy.

For the speech recognition problem, the organization of information in the speech signal appeared to be a hierarchy of patterns, with each pattern represented by a linear string of elements with a forward direction. Each element of a pattern could be another pattern at a lower level, or a fundamental unit of input (which in the case of speech recognition would be our quantized vectors).

You will recognize this situation as consistent with the model of the neocortex that I presented earlier. Human speech, therefore, is produced by a hierarchy of linear patterns in the brain. If we could simply examine these patterns in the brain of the person speaking, it would be a simple matter to match her new speech utterances against her brain patterns and understand what the person was saying. Unfortunately we do not have direct access to the brain of the speaker—the only information we have is what she actually said. Of course, that is the whole point of spoken language—the speaker is sharing a piece of her mind with her utterance.

So I wondered: Was there a mathematical technique that would enable us to infer the patterns in the speaker’s brain based on her spoken words? One utterance would obviously not be sufficient, but if we had a large number of samples, could we use that information to essentially read the patterns in the speaker’s neocortex (or at least formulate something mathematically equivalent that would enable us to recognize new utterances)?

People often fail to appreciate how powerful mathematics can be—keep in mind that our ability to search much of human knowledge in a fraction of a second with search engines is based on a mathematical technique. For the speech recognition problem I was facing in the early 1980s, it turned out that the technique of hidden Markov models fit the bill rather perfectly. The Russian mathematician Andrei Andreyevich Markov (1856–1922) built a mathematical theory of hierarchical sequences of states. The model was based on the possibility of traversing the states in one chain, and if that was successful, triggering a state in the next higher level in the hierarchy. Sound familiar?

A simple example of one layer of a hidden Markov model S 1through S 4represent - фото 45

A simple example of one layer of a hidden Markov model. S 1through S 4represent the “hidden” internal states. The P i, jtransitions each represent the probability of going from state S ito state S j. These probabilities are determined by the system learning from training data (including during actual use). A new sequence (such as a new spoken utterance) is matched against these probabilities to determine the likelihood that this model produced the sequence.

Markov’s model included probabilities of each state’s successfully occurring. He went on to hypothesize a situation in which a system has such a hierarchy of linear sequences of states, but those are unable to be directly examined—hence the name hidden Markov models. The lowest level of the hierarchy emits signals, which are all we are allowed to see. Markov provides a mathematical technique to compute what the probabilities of each transition must be based on the observed output. The method was subsequently refined by Norbert Wiener in 1923. Wiener’s refinement also provided a way to determine the connections in the Markov model; essentially any connection with too low a probability was considered not to exist. This is essentially how the human neocortex trims connections—if they are rarely or never used, they are considered unlikely and are pruned away. In our case, the observed output is the speech signal created by the person talking, and the state probabilities and connections of the Markov model constitute the neocortical hierarchy that produced it.

I envisioned a system in which we would take samples of human speech, apply the hidden Markov model technique to infer a hierarchy of states with connections and probabilities (essentially a simulated neocortex for producing speech), and then use this inferred hierarchical network of states to recognize new utterances. To create a speaker-independent system, we would use samples from many different individuals to train the hidden Markov models. By adding in the element of hierarchies to represent the hierarchical nature of information in language, these were properly called hierarchical hidden Markov models (HHMMs).

My colleagues at Kurzweil Applied Intelligence were skeptical that this technique would work, given that it was a self-organizing method reminiscent of neural nets, which had fallen out of favor and with which we had had little success. I pointed out that the network in a neural net system is fixed and does not adapt to the input: The weights adapt, but the connections do not. In the Markov model system, if it was set up correctly, the system would prune unused connections so as to essentially adapt the topology.

I established what was considered a “skunk works” project (an organizational term for a project off the beaten path that has little in the way of formal resources) that consisted of me, one part-time programmer, and an electrical engineer (to create the frequency filter bank). To the surprise of my colleagues, our effort turned out to be very successful, having succeeded in recognizing speech comprising a large vocabulary with high accuracy.

After that experiment, all of our subsequent speech recognition efforts have been based on hierarchical hidden Markov models. Other speech recognition companies appeared to discover the value of this method independently, and since the mid-1980s most work in automated speech recognition has been based on this approach. Hidden Markov models are also used in speech synthesis—keep in mind that our biological cortical hierarchy is used not only to recognize input but also to produce output, for example, speech and physical movement.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «How to Create a Mind: The Secret of Human Thought Revealed»

Представляем Вашему вниманию похожие книги на «How to Create a Mind: The Secret of Human Thought Revealed» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «How to Create a Mind: The Secret of Human Thought Revealed»

Обсуждение, отзывы о книге «How to Create a Mind: The Secret of Human Thought Revealed» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x