Ray Kurzweil - How to Create a Mind - The Secret of Human Thought Revealed

Здесь есть возможность читать онлайн «Ray Kurzweil - How to Create a Mind - The Secret of Human Thought Revealed» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2012, ISBN: 2012, Издательство: Penguin, Жанр: Прочая научная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

How to Create a Mind: The Secret of Human Thought Revealed: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «How to Create a Mind: The Secret of Human Thought Revealed»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ray Kurzweil, the bold futurist and author of The New York Times bestseller The Singularity Is Near, is arguably today’s most influential technological visionary. A pioneering inventor and theorist, he has explored for decades how artificial intelligence can enrich and expand human capabilities.
Now, in his much-anticipated How to Create a Mind, he takes this exploration to the next step: reverse-engineering the brain to understand precisely how it works, then applying that knowledge to create vastly intelligent machines.
Drawing on the most recent neuroscience research, his own research and inventions in artificial intelligence, and compelling thought experiments, he describes his new theory of how the neocortex (the thinking part of the brain) works: as a self-organizing hierarchical system of pattern recognizers. Kurzweil shows how these insights will enable us to greatly extend the powers of our own mind and provides a roadmap for the creation of superintelligence—humankind's most exciting next venture. We are now at the dawn of an era of radical possibilities in which merging with our technology will enable us to effectively address the world’s grand challenges.
How to Create a Mind is certain to be one of the most widely discussed and debated science books in many years—a touchstone for any consideration of the path of human progress.

How to Create a Mind: The Secret of Human Thought Revealed — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «How to Create a Mind: The Secret of Human Thought Revealed», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

He projects simulating an entire rat brain of 100 mesocircuits, totaling 100 million neurons and about a trillion synapses, by 2014. In a talk at the 2009 TED conference at Oxford, Markram said, “It is not impossible to build a human brain, and we can do it in 10 years.” 3 His most recent target for a full brain simulation is 2023. 4

Markram and his team are basing their model on detailed anatomical and electrochemical analyses of actual neurons. Using an automated device they created called a patch-clamp robot, they are measuring the specific ion channels, neurotransmitters, and enzymes that are responsible for the electrochemical activity within each neuron. Their automated system was able to do thirty years of analysis in six months, according to Markram. It was from these analyses that they noticed the “Lego memory” units that are the basic functional units of the neocortex.

Actual and projected progress of the Blue Brain brain simulation project - фото 34

Actual and projected progress of the Blue Brain brain simulation project.

Significant contributions to the technology of robotic patch-clamping was made by MIT neuroscientist Ed Boyden, Georgia Tech mechanical engineering professor Craig Forest, and Forest’s graduate student Suhasa Kodandaramaiah. They demonstrated an automated system with one-micrometer precision that can perform scanning of neural tissue at very close range without damaging the delicate membranes of the neurons. “This is something a robot can do that a human can’t,” Boyden commented.

To return to Markram’s simulation, after simulating one neocortical column, Markram was quoted as saying, “Now we just have to scale it up.” 5 Scaling is certainly one big factor, but there is one other key hurdle, which is learning. If the Blue Brain Project brain is to “speak and have an intelligence and behave very much as a human does,” which is how Markram described his goal in a BBC interview in 2009, then it will need to have sufficient content in its simulated neocortex to perform those tasks. 6 As anyone who has tried to hold a conversation with a newborn can attest, there is a lot of learning that must be achieved before this is feasible.

The tip of the patchclamping robot developed at MIT and Georgia Tech scanning - фото 35

The tip of the patch-clamping robot developed at MIT and Georgia Tech scanning neural tissue.

There are two obvious ways this can be done in a simulated brain such as Blue Brain. One would be to have the brain learn this content the way a human brain does. It can start out like a newborn human baby with an innate capacity for acquiring hierarchical knowledge and with certain transformations preprogrammed in its sensory preprocessing regions. But the learning that takes place between a biological infant and a human person who can hold a conversation would need to occur in a comparable manner in nonbiological learning. The problem with that approach is that a brain that is being simulated at the level of detail anticipated for Blue Brain is not expected to run in real time until at least the early 2020s. Even running in real time would be too slow unless the researchers are prepared to wait a decade or two to reach intellectual parity with an adult human, although real-time performance will get steadily faster as computers continue to grow in price/performance.

The other approach is to take one or more biological human brains that have already gained sufficient knowledge to converse in meaningful language and to otherwise behave in a mature manner and copy their neocortical patterns into the simulated brain. The problem with this method is that it requires a noninvasive and nondestructive scanning technology of sufficient spatial and temporal resolution and speed to perform such a task quickly and completely. I would not expect such an “uploading” technology to be available until around the 2040s. (The computational requirement to simulate a brain at that degree of precision, which I estimate to be 10 19calculations per second, will be available in a supercomputer according to my projections by the early 2020s; however, the necessary nondestructive brain scanning technologies will take longer.)

There is a third approach, which is the one I believe simulation projects such as Blue Brain will need to pursue. One can simplify molecular models by creating functional equivalents at different levels of specificity, ranging from my own functional algorithmic method (as described in this book) to simulations that are closer to full molecular simulations. The speed of learning can thereby be increased by a factor of hundreds or thousands depending on the degree of simplification used. An educational program can be devised for the simulated brain (using the functional model) that it can learn relatively quickly. Then the full molecular simulation can be substituted for the simplified model while still using its accumulated learning. We can then simulate learning with the full molecular model at a much slower speed.

American computer scientist Dharmendra Modha and his IBM colleagues have created a cell-by-cell simulation of a portion of the human visual neocortex comprising 1.6 billion virtual neurons and 9 trillion synapses, which is equivalent to a cat neocortex. It runs 100 times slower than real time on an IBM BlueGene/P supercomputer consisting of 147,456 processors. The work received the Gordon Bell Prize from the Association for Computing Machinery.

The purpose of a brain simulation project such as Blue Brain and Modha’s neocortex simulations is specifically to refine and confirm a functional model. AI at the human level will principally use the type of functional algorithmic model discussed in this book. However, molecular simulations will help us to perfect that model and to fully understand which details are important. In my development of speech recognition technology in the 1980s and 1990s, we were able to refine our algorithms once the actual transformations performed by the auditory nerve and early portions of the auditory cortex were understood. Even if our functional model was perfect, understanding exactly how it is actually implemented in our biological brains will reveal important knowledge about human function and dysfunction.

We will need detailed data on actual brains to create biologically based simulations. Markram’s team is collecting its own data. There are large-scale projects to gather this type of data and make it generally available to scientists. For example, Cold Spring Harbor Laboratory in New York has collected 500 terabytes of data by scanning a mammal brain (a mouse), which they made available in June 2012. Their project allows a user to explore a brain similarly to the way Google Earth allows one to explore the surface of the planet. You can move around the entire brain and zoom in to see individual neurons and their connections. You can highlight a single connection and then follow its path through the brain.

Sixteen sections of the National Institutes of Health have gotten together and sponsored a major initiative called the Human Connectome Project with $38.5 million of funding. 7 Led by Washington University in St. Louis, the University of Minnesota, Harvard University, Massachusetts General Hospital, and the University of California at Los Angeles, the project seeks to create a similar three-dimensional map of connections in the human brain. The project is using a variety of noninvasive scanning technologies, including new forms of MRI, magnetoencephalography (measuring the magnetic fields produced by the electrical activity in the brain), and diffusion tractography (a method to trace the pathways of fiber bundles in the brain). As I point out in chapter 10, the spatial resolution of noninvasive scanning of the brain is improving at an exponential rate. The research by Van J. Wedeen and his colleagues at Massachusetts General Hospital showing a highly regular gridlike structure of the wiring of the neocortex that I described in chapter 4 is one early result from this project.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «How to Create a Mind: The Secret of Human Thought Revealed»

Представляем Вашему вниманию похожие книги на «How to Create a Mind: The Secret of Human Thought Revealed» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «How to Create a Mind: The Secret of Human Thought Revealed»

Обсуждение, отзывы о книге «How to Create a Mind: The Secret of Human Thought Revealed» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x