Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

9. В треугольниках ABC и A1B1C1 длина стороны АВ равна длине стороны А1В1, длина стороны АС равна длине стороны А1С1, величина угла ВАС равна 60° и величина угла В1А1С1 равна 120°. Известно, что отношение длины В1С1 к длине ВС равно ?n (где n – целое число). Найти отношение длины АВ к длине АС. При каких значениях n задача имеет хотя бы одно решение (рис. 133)? (3)

Рис 133 Решение Пусть ABC и A1B1C1 данные в условии задачи треугольники - фото 204

Рис. 133.

Решение: Пусть ABC и A1B1C1 – данные в условии задачи треугольники. Применяя теорему косинусов к треугольникам ABC и А1В1С1, имеем:

Т к по условию задачи В1С1 ВС n то Поскольку А1В1 АВ и А1С1 АС то - фото 205

Т. к. по условию задачи В1С1 :ВС = ?n, то

Поскольку А1В1 АВ и А1С1 АС то разделив числитель и знаменатель дроби в - фото 206

Поскольку А1В1 = АВ и А1С1 = АС, то, разделив числитель и знаменатель дроби в левой части равенства (1) на АС2и обозначив АВ: АС через х, получим равенство:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 207

откуда ясно, что искомое отношение длины АВ к длине АС есть корень уравнения

х2(n – 1) – х(n + 1) + n – 1 = 0. (2)

Т. к. В1С1 > ВС, то n > 1. Следовательно, уравнение (2) является квадратным. Его дискриминант равен (n + 1)2– 4(n – 1)2= – 3n2+ 10n – 3.

Уравнение (2) будет иметь решения, если – 3n2+ 10n – 3 ? 0, т. е. при -1/3 ? n ? 3. Т. к. n – натуральное число, большее 1, то уравнение (2) имеет решения при n = 2 и n = 3. При n = 3 уравнение (2) имеет корень х = 1; при n = 2 уравнение имеет корни

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 208

Ответ: отношение длины АВ к длине АС равно

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 209

при n = 2; равно 1 при n = 3; при остальных n решений нет.

Задачи для самостоятельного решения

10. В треугольнике ABC высота AD на 4 см меньше стороны ВС. Сторона АС равна 5 см. Найдите периметр треугольника ABC, если его площадь равна 16 см2. (1)

11. Докажите, что для любого треугольника выполняется равенство:

где ha hb и hc высоты треугольника а r радиус вписанной окружности 2 - фото 210

где ha, hb и hc – высоты треугольника, а r – радиус вписанной окружности. (2)

12. Основание треугольника равно ?2. Найдите длину отрезка прямой, параллельной основанию и делящей площадь треугольника пополам.(2)

13. Найдите площадь треугольника по стороне а и прилежащим к ней углам ? и ?. (2)

14. В треугольнике ABC длина высоты BD равна 6 см, длина медианы СЕ равна 5 см, расстояние от точки пересечения отрезков BD и СЕ до стороны АС равно 1 см. Найти длину стороны АВ. (3)

15. В треугольнике ABC высота BD равна 11,2, а высота АЕ равна 12. Точка Е лежит на стороне ВС, и BE: ЕС = 5:9. Найти длину стороны АС. (3)

16. В треугольнике ABC длина стороны АС равна 3, ?ВАС = ?/6 и радиус описанной окружности равен 2. Доказать, что площадь треугольника ABC меньше 3. (3)

17. В треугольнике ABC медианы, проведенные к сторонам АС и ВС, пересекаются под прямым углом. Длина стороны АС равна b, длина стороны ВС равна а. Найти длину стороны АВ. (3)

1.2. Задачи на равнобедренный и равносторонний треугольники

К задачам на равнобедренный треугольник применимы все формулы п. 1.1 этой главы, разве что во всех формулах b = с, ? = ?.

В случае равностороннего треугольника формулы значительно упрощаются, т. к. а = b = с, ? = ? = ? = 60°. Тогда

длины всех медиан высот и биссектрис равны Примеры решения задач 18 Один из - фото 211

длины всех медиан, высот и биссектрис равны

Примеры решения задач 18 Один из углов равнобедренного треугольника равен - фото 212
Примеры решения задач

18. Один из углов равнобедренного треугольника равен 120°. Найдите отношение сторон треугольника (рис. 134). (1)

Рис 134 Решение Обозначим основание треугольника через b боковые стороны - фото 213

Рис. 134.

Решение. Обозначим основание треугольника через b, боковые стороны через а (см. рис.). По теореме косинусов

Тогда отношения сторон треугольника а а в 113 Ответ 113 19 - фото 214

Тогда отношения сторон треугольника а: а: в = 1:1:?3.

Ответ: 1:1:?3.

19. Найдите площадь круга, описанного вокруг равностороннего треугольника со стороной а (рис. 135). (1)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x