Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

32. Докажите, что медиана треугольника ABC, проведённая из вершины А, меньше полусуммы сторон АВ и АС. (1)

33. Могут ли пересекаться окружности с радиусами R1 и R2 и расстоянием между центрами d, если R1 + R2 < d? (1)

34. Найдите радиус r окружности, вписанной в равносторонний треугольник со стороной а, и радиус R окружности, описанной около него. (1)

35. Найдите геометрическое место точек плоскости ху, для которых |х| = 3. (1)

36. Составьте уравнение окружности с центром в точке (1; 2), касающейся оси х. (1)

37. Докажите, что прямая, содержащая медиану равнобедренного треугольника, проведённую к основанию, является осью симметрии треугольника. (1)

38. Сколько осей симметрии у равностороннего треугольника? (1)

39. Докажите, что ромбы равны, если у них равны диагонали. (1)

40. Даны точки A(0; 1), В(1; 0), С(1; 2), D(2; 1). Докажите равенство векторов АВ и CD.(1)

41. Дан параллелограмм ABCD, AC = a, DB = b. Выразите векторы АВ, СВ, CD и АD через а и b (рис. 117).(1)

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 146

Рис. 117.

42. Докажите, что для любого вектора

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 147

43. Докажите, что дуги окружности, заключённые между параллельными хордами, равны. (2)

44. Докажите правильность соотношения

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 148

(рис. 118). (2)

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 149

Рис. 118.

45. Докажите правильность соотношения

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 150

(рис. 119). (2)

Рис 119 46 АВ касательная Докажите что х 2 рис 120 2 Рис - фото 151

Рис. 119.

46. АВ – касательная. Докажите, что х = ?/2 (рис. 120). (2)

Рис 120 47 Докажите что если два треугольника подобны с коэффициентом - фото 152

Рис. 120.

47. Докажите, что если два треугольника подобны с коэффициентом подобия k, то с тем же коэффициентом подобия подобны соответствующие линейные элементы этих треугольников (высоты, медианы, радиусы описанной и вписанной окружностей, периметры и т. д.). (2)

48. Докажите, что если для четырёх точек плоскости А, В, М и К выполняется одно из следующих условий: а) точки М и К расположены по одну сторону от прямой АВ и при этом ?АМВ = ?АКБ; б) точки М и К расположены по разные стороны от прямой АВ и при этом ?АМВ + ?АКБ = 180°, то точки А, В, М и К лежат на одной окружности. (2)

49. Докажите, что биссектриса внешнего угла треугольника обладает свойством, аналогичному биссектрисе внутреннего угла, а именно:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 153

(рис. 121). (2)

Рис 121 50 ABC произвольный треугольник СР и AQ высоты Докажите что - фото 154

Рис. 121.

50. ABC – произвольный треугольник. СР и AQ – высоты. Докажите, что треугольник ABC и треугольник PBQ подобны. Чему равен коэффициент подобия (рис. 122)? (2)

Рис 122 51 Докажите равенство треугольников по медиане и углам на которые - фото 155

Рис. 122.

51. Докажите равенство треугольников по медиане и углам, на которые медиана разбивает угол треугольника. (2)

52. Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует с ней медиана. (2)

53. Разделите отрезок АВ с помощью циркуля и линейки на n равных частей. (2)

54. На стороне АВ треугольника ABC взята точка X Докажите, что отрезок СХ меньше, по крайней мере, одной из сторон АС или ВС. (2)

55. Какая геометрическая фигура задана уравнением

56 Докажите что при движении параллелограмм переходит в параллелограмм 2 - фото 156

56. Докажите, что при движении параллелограмм переходит в параллелограмм. (2)

57. Докажите, что у параллелограмма точка пересечения диагоналей является центром симметрии. (2)

58. Докажите, что отрезки, соединяющие противоположные вершины описанного шестиугольника, пересекаются в одной точке (теорема Брианшона). (3)

59. Докажите, что основания перпендикуляров, проведённых к прямым, содержащим стороны треугольника, из произвольной точки описанной около него окружности, лежат на одной прямой (теорема Симпсона). (3)

60. Докажите, что если противоположные стороны вписанного шестиугольника не параллельны, то точки пересечения продолжений этих сторон лежат на одной прямой (теорема Паскаля). (3)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x