Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Здесь есть возможность читать онлайн «Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0635-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Если радиус Земли взять равным примерно 6350 км тогда общая площадь Земли - фото 97

Если радиус Земли взять равным примерно 6350 км, тогда общая площадь Земли составит:

ГРАДУСЫ И РАДИАНЫ Радиан определяется как величина центрального угла - фото 98

* * *

ГРАДУСЫ И РАДИАНЫ

Радиан определяется как величина центрального угла окружности, длина дуги которого равна радиусу окружности. Эта величина составляет примерно 55 градусов 17 минут и 44 секунды. Радиан (часто обозначаемый как рад, rad ) используется в качестве единицы измерения так называемой «круговой меры угла». Если круговая мера угла в радианах равна а , то угол будет равен 180°· а/ πградусов, и наоборот если угол равен G ° , то круговая мера угла составит π· G/ 180радиан.

То есть угол в 360° полной окружности составит 2· πрадиан. В общем случае эти вычисления осуществляются следующим образом.

Если πрадиан соответствует 180°, то Rрадиан соответствует G ° , что дает нам следующую пропорцию: π/ 180 = R/ G. Например, сколько радиан имеет угол в 30°? Подставляя в формулу, получим π/ 180 = R/ 30, откуда находим R:

R= (30· π/180 )= π/6 рад.

Мы также можем решить обратную задачу. Сколько градусов имеет угол в π/4 радиан? Подставляя в формулу, получим

π/180 = ( π/4)/ G, откуда находим G:

G= (( π/4)·180)/ π= 45°

* * *

Применим теперь формулу для объема и получим:

V= (4· π·6350 3)/3 = 1,072499199·10 12·км 3

С этими результатами мы можем вычислить площадь октанта, одной восьмой части земной поверхности. Просто разделим значение площади Земли на 8. Это дает нам 63336566,88 км 2.

Как мы видим, каждый октант очерчивает сферический треугольник с углами 90° = π/2 радиан. Обратите внимание, что общая сумма составляет 270° = З π/2 радиан (то есть более чем 180° = πрадиан). Тогда чему будет равна каждая из сторон?

Каждая из сторон представляет собой дугу большого круга. Используя формулу для длины дуги, получим:

( α· R) = ( π/2)·6350 = 9 974,2625 км

Этот же результат можно получить и другим способом: разделить длину большого круга на четыре (напомним, что длина окружности составляет 2πR):

( 2π·6350)/4 = 9974,2625 км.

Ясно, что ту же процедуру можно повторить для Луны, радиус которой равен 1736 км.

* * *

ДЛИНА ДУГИ КРУГОВОГО СЕКТОРА

Для части окружности с центром O и радиусом r , изображенной на рисунке, обозначим α угол, измеряемый, как правило, в радианах, а с — дугу между точками А и B . Тогда длина дуги выражается следующим образом: с= α· r.

Имея дело с длиной стороны сферического треугольника мы обычно используем - фото 99

Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.

* * *

Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками А и В на сферической поверхности из всех окружностей, проходящих через эти точки и расположенных на этой сфере, геодезической линией является большой круг. Другими словами, геодезическая линия получается путем пересечения сферы плоскостью АОВ . Таким образом, геодезическим отрезком между точками А и В является меньшая из дуг большого круга, проходящего через А и В . Обратите внимание, что случай с этим кругом — единственный, когда А и В не являются диаметрально противоположными точками.

В геометрии на сфере прямыми линиями являются дуги больших кругов Таким - фото 100

В геометрии на сфере прямыми линиями являются дуги больших кругов. Таким образом, параллельные линии не существуют, так как большие круги всегда пересекаются в диаметрально противоположных точках. Для наглядности достаточно взглянуть на дольки очищенного апельсина.

* * *

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»

Представляем Вашему вниманию похожие книги на «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»

Обсуждение, отзывы о книге «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x