Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Здесь есть возможность читать онлайн «Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0635-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для переменной х гиперболический синус и гиперболический косинус определяются следующим образом:

Аналогично элементарной тригонометрии гиперболический тангенс определяется - фото 78

Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:

th x = sh x / ch x

Здесь мы вкратце напомним так называемую теорему синусов.

В треугольнике со сторонами а, b и с и с углами А, В и С

справедливо следующее соотношение a sin A b sin В c sin С - фото 79

справедливо следующее соотношение:

a / sin A = b / sin В = c / sin С

Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:

sin A / sh a = sin B / sh b = sin С / sh c

Чтобы проверить гиперболические равенства нужно подставить вместо - фото 80

Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:

и затем выполнив соответствующие расчеты убедиться что получится один и тот - фото 81

и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.

Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что

ch(x + у) = chchy + shshy

аналогично традиционному выражению

cos(x + у) = coscosy + sinsiny

* * *

ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ

В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin 2x + cos 2x = 1. Аналогом в гиперболической тригонометрии является следующее тождество:

ВОПРОС ТЕРМИНОЛОГИИ В евклидовой терминологии синус и косинус называются - фото 82

ВОПРОС ТЕРМИНОЛОГИИ

В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х 2+ у 2= 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х 2+ у 2= 1. Такое уравнение называется параметрическим уравнением окружности.

Если вместо круга мы возьмем гиперболу, график функции х 2— у 2 = 1, то х = cht и у = sht удовлетворяют соотношению х 2 — у 2 = 1. Это уравнение называется «уравнением гиперболы».

Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.

Что касается тангенсов то можно показать что аналогично традиционному - фото 83

* * *

Что касается тангенсов, то можно показать, что

аналогично традиционному выражению ЕВКЛИДОВА ТРИГОНОМЕТРИЯ - фото 84

аналогично традиционному выражению

ЕВКЛИДОВА ТРИГОНОМЕТРИЯ Тригонометрические тождества для суммы и разности - фото 85

* * *

ЕВКЛИДОВА ТРИГОНОМЕТРИЯ

Тригонометрические тождества для суммы и разности выглядят следующим образом:

sin(x + у) = sincosy + cossiny

cos(x + у) = coscosy — sinsiny

sin(x — y) = sincosy — cossiny

cos(x — y ) = coscosy + sinsiny

* * *

РЕШЕНИЕ ГИПЕРБОЛИЧЕСКОГО ТРЕУГОЛЬНИКА ПО ЕГО УГЛАМ

Пусть в гиперболическом треугольнике даны внутренние углы А = 8°, В = 22° и С = 40°. Надо найти угловой дефект и длины сторон треугольника.

Угловой дефект считается по формуле 180° — (8° + 22° + 40°) = 110°. Для вычисления длин сторон мы воспользуемся гиперболической теоремой косинусов и получим

Это позволяет нам вычислить значение а Для этого воспользуемся калькулятором - фото 86

Это позволяет нам вычислить значение а . Для этого воспользуемся калькулятором и посчитаем функцию, обратную гиперболическому косинусу. Получим значение 2,642857562. Далее

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»

Представляем Вашему вниманию похожие книги на «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии»

Обсуждение, отзывы о книге «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x