Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь есть возможность читать онлайн «Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Посадка в шахматном порядке <���…>. Чтобы определить, где следует сажать деревья, достаточно, чтобы один рабочий взял в руки рулетку и встал там, где нужно посадить первое дерево. Второй рабочий, взяв в руки конец рулетки, должен отойти на расстояние, равное желаемому расстоянию между деревьями (например, 5 м) и отмотать ленту длиной в два раза больше чем требуется (если деревья планируется посадить на расстоянии 5 м друг от друга, рабочий должен отмотать 10 м ленты рулетки). Третий рабочий должен взяться за середину ленты рулетки и отойти в сторону, натягивая ленту. Когда лента рулетки натянется полностью, третий рабочий окажется точно в том месте, где нужно посадить третье дерево».

Здесь равносторонний треугольник понимается как частный случай равнобедренного. Именно на этом примере можно оценить справедливость фразы: теоретическое решение практической задачи обычно является не лучшим практическим решением. Вот и в этом случае решение, предложенное профессиональным математиком, на практике не применяется. С математической точки зрения, напротив, практика не имеет значения. Не имеет значения и то, что в практическом решении равносторонний треугольник понимается иначе — для математика это не новость.

Тем не менее практически решил эту задачу не математик, а садовод. И практическое решение математической задачи — это результат математического творчества.

Задача лесничего: треть того, что мы видим, — вовсе не треть того, на что мы смотрим

При обрезке деревьев обычно удаляются ветви нижней его трети, и лесничему нужно на глаз определить эту часть дерева. Является ли треть того, что мы видим, третьей частью того, на что мы смотрим? Как правило, это не так:

Визуальное и реальное деление предмета на три части совпадают только когда мы - фото 85

Визуальное и реальное деление предмета на три части совпадают, только когда мы рассматриваем дугу окружности, находясь в ее центре. Как же лесничий решит задачу? Как визуально определить треть предмета, на который он смотрит?

Чаще всего точная высота дерева нам неизвестна. Если А 1 — угол зрения, под которым можно увидеть все дерево, а — уровень глаз, d — расстояние до основания дерева, то угол А 3 определяющий нижнюю треть дерева, вычисляется по формуле:

В чем заключается суть вопроса В том что видимая величина угла меняется в - фото 86

В чем заключается суть вопроса? В том, что видимая величина угла меняется в зависимости от точки, из которой мы смотрим на него. Видимая середина отрезка будет соответствовать его истинной середине только в том случае, если мы будем находиться на серединном перпендикуляре к этому отрезку:

При делении отрезка на три части подобная ситуация невозможна Если бы она была - фото 87

При делении отрезка на три части подобная ситуация невозможна. Если бы она была возможна, то существовала бы точка X плоскости, такая, что при взгляде из нее трети Р 1Р 2, Р 2Р 3 и P 3P 4 отрезка Р 1Р 4 были бы видны под одним и тем же углом (см. рисунок ниже). Следовательно, так как из точки X можно было бы увидеть под одним и тем же углом две половины P 1P 3 точка X должна была бы располагаться на серединном перпендикуляре к отрезку P 1P 3 (то есть на прямой, проходящей через Р 2 и перпендикулярной P 1P 3 ). Это же было бы справедливо для серединного перпендикуляра к отрезку Р 2Р 4 (прямой, проходящей через Р 3 и перпендикулярной Р 2Р 4 ). Таким образом, точка X должна была бы располагаться одновременно на двух серединных перпендикулярах, которые параллельны между собой, так как они перпендикулярны одному и тому же отрезку P 1P 4 , что невозможно:

За исключением случая когда мы смотрим на дугу окружности находясь в ее - фото 88

За исключением случая, когда мы смотрим на дугу окружности, находясь в ее центре, треть того, что мы видим, — вовсе не треть того, на что мы смотрим.

Предупреждение для бухгалтера: округленная сумма значений не равна сумме округленных значений

Округление чисел выполняется по следующим правилам: если последний знак десятичной записи числа меньше 5, этот знак заменяется на 0, если же последний знак больше 5, то предыдущий знак увеличивается на единицу:

2,34 ~= 2,3;

2,37 ~= 2,4.

Ошибки округления в одну десятую, сотую или тысячную при работе с большими числами могут быть значительными. Если ошибка в одну сотую евро повторится на 300 миллионах счетов, общее расхождение составит 3 миллиона евро. В бухгалтерском учете подобное недопустимо. При составлении балансов даже сотые доли евро могут повлиять на итоговое значение округленной величины:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Представляем Вашему вниманию похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Обсуждение, отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x