В этой главе мы расскажем о математическом творчестве в самых разных областях, большинство из которых далеки от академической среды. Приведенные нами примеры — результат того, что кто-то задал новые вопросы, попытался найти иное решение, придать новое значение уже известным понятиям и применить уже известные идеи в новом контексте. Творчество — это жизнь. Если мы задаемся вопросами из области математики, то мы творим математику.
С чего начать? В чем секрет математического творчества? Поиски ответов на эти вопросы можно начать в повседневной жизни. Мы рассмотрим некоторые явления, с которыми сталкиваются все, но лишь немногие подошли к ним с математической точки зрения. Далее мы отойдем от реальности и в итоге окажемся в чисто математическом мире.
Для того чтобы рассмотреть интересующее нас явление, объект или процесс с точки зрения математики, нужно задать объективные вопросы, ответы на которые будут определяться не нашими предпочтениями, вкусами или соображениями удобства, а требованиями четкости и измеримости. Так будет сделан первый выбор, касающийся точки зрения, которую следует принять.
Каждый день перед зеркалом
Первое, что мы делаем после пробуждения утром, — это идем в ванную, чтобы привести себя в порядок. Мы смотримся в зеркало, когда умываемся, бреемся, накладываем макияж, стрижемся. Мы смотримся в зеркало каждый день. Чего мы хотим от него? Совсем немногого: мы всего лишь хотим увидеть в нем свое лицо полностью. После завтрака и перед тем, как закрыть за собой дверь и отправиться по делам, мы мельком смотрим в зеркало, чтобы проверить, все ли в порядке. Чего мы хотим от зеркала на этот раз? Чтобы мы отразились в нем в полный рост.
Сколько раз мы совершали эти действия и сколько раз мы задавались вопросом, какие размеры должно иметь зеркало, чтобы в нем полностью отразилось наше лицо или мы сами в полный рост? Мы задаемся этим вопросом крайне редко, если вообще когда-нибудь думаем об этом. Представьте, что вы стоите перед зеркалом, в котором вы отражаетесь в полный рост. Какой должна быть минимальная высота такого зеркала? Начнем с того, что изобразим эту ситуацию на схеме с помощью точек и отрезков:
Схема показывает, какими должны быть минимальные размеры зеркала. Нужно определить, каким должно быть отношение размеров отражающей поверхности и отражающегося в ней лица. Для этого сделаем схему еще более условной: проведем вспомогательные линии, которые помогут решить задачу, и обозначим основные точки буквами:
Так как отражение R'S' симметрично исходному отрезку RS , и изображение в зеркале расположено на том же расстоянии от зеркала, что и оригинал, но по другую его сторону, получим RX = XR' . Кроме того, RX = RR' /2.
Помимо этого, треугольники OAY и OR'О' подобны, так как два их угла равны. Аналогично для треугольников OYB и OO'S' . Так как RX = RR' /2, коэффициент подобия этих треугольников равен 2, поэтому AY = R'O' /2 = RO /2, а также YB = O'S' /2 = OS /2.
Иными словами, АВ = AY + YB = RO /2 + OS /2 = ( RO + OS )/2 = RS /2, так что высота зеркала должна быть равной минимум половине высоты лица. Высота, на которой следует повесить зеркало, равна BZ = YZ /2, то есть половине расстояния от глаз до подбородка. Аналогично, высота зеркала, в котором мы будем отражаться полностью, должна быть равна половине нашего роста, и такое зеркало следует повесить на высоте, равной половине расстояния от глаз до пола.
Взгляд в сторону горизонта
Выйдя из дома, некоторые из нас имеют счастливую возможность пойти на пляж и насладиться видом горизонта, глядя вдаль, на самый край земли, покуда хватает глаз. Кто-нибудь хоть раз, глядя на горизонт, думал о математике? Как правило, любуясь рассветом или закатом, мы задаемся другими вопросами: мы размышляем о прошлом и будущем, о красоте природы, о рыбаках, которые возвращаются из моря с дневным уловом, о том, что скрывается за линией горизонта, куда неожиданно быстро опускается горящее солнце, озаряющее наши жизни…
Но если мы посмотрим на горизонт взглядом математика, у нас возникнут совсем другие вопросы. Мы заметим, что когда мы наклоняемся, горизонт приближается, когда мы поднимаемся — горизонт отдаляется. Если мы сделаем полный оборот вокруг себя, то увидим, что горизонт круглый, поэтому мореходы в древности считали, что Земля круглая: в море, далеко от берега, они видели вокруг себя лишь круглый горизонт. Какое расстояние отделяет нас от горизонта? Каков его радиус? Какое расстояние отделяет нас от судна, которое виднеется на горизонте?
Читать дальше