Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь есть возможность читать онлайн «Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

х = 0,5

f(0,5) = 0,5 2= 0,25

f(0,25) = 0,25 2= 0,0625

f(0,0625) = 0,0625 2= 0,0039

=> Орбита точки 0,5 = {0,5; 0,25; 0,0625; 0,0039; …} —> 0.

Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и x = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:

х = 2

f ( 2) = 2 2= 4

f(4) = 4 2 = 16

f(16) = 16 2= 256

=> Орбита точки 2 = {2, 4, 16, 256…} —> Компьютер позволил увидеть что произойдет с похожей функцией на поле - фото 65

Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:

Результат оказался неожиданным и с математической и с эстетической точки - фото 66

Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с , для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:

Математики смогли увидеть множество Мандельброта лишь в 1980 году и до этого - фото 67

Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:

Множество М обладает самоподобием и одновременно изменчивостью бесконечной - фото 68

Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.

С точки зрения топологии фрактальная кривая отличается от традиционных. Принципиальное отличие фрактальных кривых состоит как раз в их бесконечном самоподобии: если увеличить часть традиционной кривой в окрестности любой точки, она будет представлять собой отрезок, в то время как любой увеличенный фрагмент фрактальной кривой, напротив, будет иметь ту же форму, что и исходная кривая. В результате размерность фрактальных объектов не выражается целым числом от 1 до 3, в отличие от традиционных кривых. Размерность кривой Коха, например, равна 1,26186… По сути, несмотря на то что компьютер позволяет наглядно представить различные этапы построения фрактальных объектов, мы никогда не сможем увидеть результат этого процесса, так как он бесконечен. Увидеть окончательные очертания фрактальных кривых нельзя. Когда мы пытаемся поближе рассмотреть их, то видим, что они меняются и выглядят не так, как нам казалось раньше.

* * *

СЪЕДОБНЫЙ ФРАКТАЛ

Фракталы столь часто встречаются в реальном мире, что можно свободно говорить о фрактальной геометрии природы. Однако в природе фракталы обычно обладают не более чем четырьмя уровнями самоподобия, как, например, ветви растений, нервные окончания или подземные водоносные слои. Фрактальная размерность — это характеристика, позволяющая обнаруживать костные патологии и описывать электроэнцефалограммы.

Цветная капуста, изображенная на иллюстрации, в действительности является гибридом, который впервые был обнаружен в Италии в XVI веке. Ее структура представляет собой удивительный пример фрактальной геометрии в природе. Кочан капусты (первый уровень) состоит из уменьшенных копий самого себя (второй уровень), расположенных в форме спирали. Каждая из них, в свою очередь, также состоит из уменьшенных копий самой себя, которые вновь располагаются по спирали (третий уровень). Это же подобие наблюдается и на следующем, четвертом уровне.

Глава 3 Вопросы которые задает мир В предыдущей главе мы рассказали о - фото 69

Глава 3

Вопросы, которые задает мир

В предыдущей главе мы рассказали о величайших математических творениях за всю историю математики. Сегодня эту науку двигают вперед преимущественно профессионалы, но не исключительно они. Творить математику означает не только создавать великие теоремы, которые войдут в историю, но и ставить задачи, объяснять явления с математической точки зрения, разрабатывать практические методы, позволяющие применять математику в реальной жизни, использовать технологии для развития математики, поиска математических решений и, что самое важное, понимать, когда математический ответ на заданный вопрос является необходимым и достаточным. Творить математику способны многие. Возможно, выводы, к которым они придут, не будут чем-то новым для профессиональных математиков, однако труд любителей и профессионалов по сути ничем не отличается.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Представляем Вашему вниманию похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Обсуждение, отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x