Я заметил страницу и захлопнул книгу. И тут же открыл ее. Напрасно я искал, страница за страницей, изображение якоря…
<���…>
— …Ее владелец не умел читать… Он объяснил мне, что его книга называется Книгой Песка, потому что она, как и песок, без начала и конца» [2] Перевод В. С. Кулагиной-Ярцевой . — Примеч. ред .
.
Если бы книга была конечной, то как бы много страниц в ней ни было (например, N ), вероятность снова открыть ее на определенной странице была бы небольшой, но не нулевой. В бесконечной книге эта вероятность равна нулю:
Страницы «Книги песка» вполне могли быть пронумерованы натуральными числами: 1, 2, 3, … При такой нумерации книгу нельзя было бы открыть на последней странице, но можно было бы открыть на первой, однако в рассказе говорится, что у книги нет ни начала, ни конца. В попытках найти начало или конец книги герою все время попадались новые и новые страницы:
«Он попросил меня найти первую страницу. Я положил левую руку на титульный лист и плотно сомкнутыми пальцами попытался раскрыть книгу.
Ничего не выходило, между рукой и титульным листом всякий раз оказывалось несколько страниц. Казалось, они вырастали из книги.
— Теперь найдите конец.
Опять неудача; я едва смог пробормотать:
— Этого не может быть.
<���…>
— Не может быть, но так есть. Число страниц в этой книге бесконечно.
Первой страницы нет, нет и последней. Не знаю, почему они пронумерованы так произвольно. Возможно, чтобы дать представление о том, что члены бесконечного ряда могут иметь любой номер. <���…> Если пространство бесконечно, мы пребываем в какой-то точке пространства. Если время бесконечно, мы пребываем в какой-то точке времени» [3] Перевод В. С. Кулагиной-Ярцевой . — Примеч. ред .
.
Так как в книге нет первой страницы, наша гипотеза о натуральных числах ошибочна. На каком множестве чисел отсутствует первый элемент? На множестве положительных рациональных чисел, то есть на множестве конечных или периодических десятичных дробей. Это множество не только бесконечное и счетное (его элементы можно сосчитать), но на нем также нет первого и последнего числа, ведь первого положительного рационального числа после нуля не существует. Если бы это число, назовем его А , существовало, то мы всегда могли бы разделить его пополам и получить A /2 — положительное рациональное число, меньшее А :
0 < А /2 < A
Первым рациональным числом должно быть A /2. Но это вновь неверно, так как A /4 еще меньше, А /8 — еще меньше. Таким образом, между данным рациональным числом (обозначающим первую страницу «Книги песка») и нулем (обозначающим обложку книги) может уместиться бесконечно много рациональных чисел (страниц книги). Мы можем пронумеровать страницы книги рациональными числами, заключенными между 0 и 1. Но у нее не будет ни первой страницы, ни последней.
Что хотел сказать Борхес, когда написал, что мы находимся в одной из точек бесконечного пространства и времени? Возможно, что мы не можем увидеть его концов или пределов. Если бы пространство и время были конечными, можно было бы вести речь о половинах, третях, соотношениях и расстояниях от концов, но если пространство и время бесконечны, эти рассуждения теряют смысл.
То, что Борхес четко представлял себе бесконечность и ее связь с различными измерениями пространства, становится очевидным уже в начале рассказа: «Линия состоит из множества точек, плоскость — из бесконечного множества линий; книга — из бесконечного множества плоскостей; сверхкнига — из бесконечного множества книг…» [4] Перевод В. С. Кулагиной-Ярцевой . — Примеч. ред
* * *
ХОРХЕ ЛУИС БОРХЕС(1899–1986)
Хорхе Луис Борхес — один из самых выдающихся писателей XX века. Его произведения сложно привязать к какому-то конкретному жанру: их в равной степени можно отнести к рассказам, эссе, поэзии и фантастике. Фантазия Борхеса не лишена логики. В его рассказах содержатся прекрасные и доступные описания научных и математических идей, понятные широкой публике. К подобным произведениям относятся «Вавилонская библиотека», «Фунес памятливый», «Аналитический язык Джона Уилкинса» и «Сад расходящихся тропок». Некоторые считают, что в последней Борхес предвосхитил некоторые открытия квантовой механики.
Читать дальше