Прошло полвека, и уже почти никто не согласен ни с Джоном Лукасом, ни с его последователем, Роджером Пенроузом, который в 1989 году расширил и дополнил его точку зрения. Означает ли это, что мы, люди, видим истинность высказывания Гёделя? Первая теорема о неполноте гласит, что если арифметика является непротиворечивой, то высказывание «эта фраза недоказуема» является истинным, следовательно, чтобы определить его истинность, сначала необходимо определить непротиворечивость арифметики. Если мы примем непротиворечивость арифметики на веру, так как сочтем, что мир свободен от противоречий, то мы также сможем запрограммировать робота, в коде которого будет отражено ожидание того, что арифметика является непротиворечивой. Это не более чем одна из трактовок второй теоремы о неполноте, которая гласит, что непротиворечивость арифметики нельзя доказать в рамках ее формальной системы. Тем не менее, возражает Лукас, математики способны доказать непротиворечивость арифметики, обратившись к более сложным методам и языкам высших порядков. Да, мы способны выйти за рамки системы, в то время как у компьютера подобный шаг вызовет затруднения. Но что, если нам удастся обучить его этому? Что, если в очень сложной искусственной нейронной сети возникнут новые трактовки непротиворечивости? Ответ на этот вопрос не так прост, как может показаться.
Что подумал бы Евклид об отходе от аксиоматического метода? Дополнение аксиоматического метода нечеткой логикой XXI века стало бы прекрасным финалом этого романа, который начался с открытия неевклидовой геометрии, продолжился теорией множеств и ее парадоксами, а в последующих его главах на первый план вышли три героя: Давид Гильберт, Курт Гёдель и Алан Тьюринг. Это было бы прекрасным завершением нашей книги, но исследования математиков и логиков на этом не заканчиваются. За те несколько месяцев, которые пройдут, прежде чем эта книга попадет к первым читателям, математики, физики и инженеры еще больше усовершенствуют нейронные сети. Нечеткая логика, возможно, возьмет новый курс, и, быть может, кому-то удастся найти решение проблемы равенства классов Р и NP . Поэтому будет лучше, если сейчас мы поставим точку. Хорошо кончается то, что не кончается, — эта фраза станет неплохим финалом книги, главными героями которой являются парадоксы.
BERTO F. Tutti pazzi per Godel! Roma, Laterza, 2007.
EUCLIDES Elementos, Madrid, Gredos, 2000.
FRESAN J. Codel. La logica de los escepticos, Madrid, Nivola, 2007.
HEIJENOORT J.V. From Frege to Godel: A Source Book in Mathematical Logic, Cambridge (Massachussets), Harvard University Press, 1967.
HOFSTADTER D.R. Godel Escher, Bach. Un eterno у grac'd bucle, Barcelona, Tusquets, 1987.
MARTINEZ G. у PINEIRO G. Godel V(para todos)t Barcelona, Destino, 2010.
MITCHELL M. Complexity, Oxford, Oxford University Press, 2009.
MOSTERIN J. Los logicos, Madrid, Espasa, 2000.
NAGEL E. у Newman J.R. El teorema de Godel Madrid, Tecnos, 1970.
SANGALLI A. The Importance of Being Fuzzy and Other Insights from the Border between Math and Computers, Princeton, Princeton University Press, 1998.
SMITH P. An Introduction to Godel's Theorems, Cambridge, Cambridge University Press, 2007
SOKAL A. у BRICMONT J. Imposturas intelectuales, Barcelona, Paidos, 1999.
* * *
Научно-популярное издание
Выходит в свет отдельными томами с 2014 года
Мир математики
Том 22
Хавьер Фресаи
Сон разума. Математическая логика и ее парадоксы
РОССИЯ
Издатель, учредитель, редакция: ООО «Де Агостини», Россия
Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1
Письма читателей по данному адресу не принимаются.
Генеральный директор: Николаос Скилакис
Главный редактор: Анастасия Жаркова
Выпускающий редактор: Людмила Виноградова
Финансовый директор: Наталия Василенко
Коммерческий директор: Александр Якутов
Менеджер по маркетингу: Михаил Ткачук
Менеджер по продукту: Яна Чухиль
Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:
8-800-200-02-01
Телефон горячей линии для читателей Москвы:
т 8-495-660-02-02
Адрес для писем читателей: Россия, 600001, г. Владимир, а/я 30, «Де Агостини», «Мир математики»
Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).
Распространение: ООО «Бурда Дистрибьюшен Сервисиз»
УКРАИНА
Издатель и учредитель:
ООО «Де Агостини Паблишинг» Украина
Читать дальше