Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим пример. Вместо того чтобы считать людей ниже 1,60 м низкими, выше 1,90 м — высокими, мы понизим границу множества и будем считать низкими людей ниже 1,50 м, далее степень принадлежности ко множеству будет постепенно возрастать, как и ранее, до значения 1,90 м. Таким образом мы получим еще одно нечеткое множество высоких людей. Степень принадлежности автора к этому множеству будет равна уже не 0,5, а 0,625. Согласно Заде, первое множество содержится во втором, и это соответствует интуитивному представлению о том, что высокие люди остаются таковыми, даже если снизить нижнюю границу множества.

Описав нечеткую логику, Лотфи Заде, изучавший электротехнику, предположил, что новую логику можно применить при обработке информации и распознавании образов — в двух областях, где нечеткость играет определяющую роль. История показала, что Заде недооценил свою идею, и наиболее широко созданная им логика применяется именно в той стране, жители которой едят чайные трюфели «со сливками, без сливок или как-то еще». В конце 90-х годов в японских магазинах начали продаваться копировальные аппараты и стиральные машины с нечеткой логикой, а в небоскребах Токио стали устанавливать лифты, нечеткая логика которых позволяла сводить время ожидания к минимуму. Как говорилось в рекламном ролике одной из этих стиральных машин, наступила нечеткая эра.

* * *

СТИРАЛЬНЫЕ МАШИНЫ С НЕЧЕТКОЙ ЛОГИКОЙ

Чтобы оптимизировать длительность и качество стирки, полезно точно указать, является одежда очень грязной, слегка грязной или практически чистой. Простейшие стиральные машины с нечеткой логикой присваивают каждой загрузке белья значение загрязнения от 0 до 1. Затем к фиксированному интервалу стирки продолжительностью в десять минут добавляется определенное время в зависимости от степени загрязнения одежды. Машина может, например, определить, что для чистого белья (0) достаточно базового времени стирки, а для очень грязного (1) — на две минуты больше. Следовательно, если мы положим в стиральную машину слегка грязную рубашку, продолжительность стирки увеличится на одну минуту. В других, более сложных моделях, с целью экономии электроэнергии учитывается степень жирности (жирные пятна отстирываются тяжелее других) и вес загруженного белья.

* * *

Сложность

«Любовь» и «справедливость» — слишком расплывчатые понятия, чтобы их можно было описать двоичной логикой. Множество оттенков серого, простирающееся между «он меня любит» и «он меня не любит», между виной и невиновностью, описывается нечеткой логикой. С ростом сложности возникает потребность в новом мышлении. Следовательно, полезно ввести оценку сложности понятий, однако само понятие «сложность» не поддается попыткам дать ему определение. Даже в царстве математики, где правит абсолютная точность, нельзя однозначно отделить сложные проблемы от простых. Именно это происходит и с машинами Тьюринга: если в прошлой главе работа с идеальными компьютерами позволила нам получить теоретические результаты, касающиеся проблем, которые не может решить машина, то теперь нас интересует, какие расчеты она может провести с учетом ограничений в объеме памяти и времени выполнения программ. Именно так, за неимением лучшего определения, мы будем отличать простые задачи от сложных.

В первом приближении мы можем определить сложность как число операций, необходимых для решения задачи. Представим коммивояжера, которому нужно посетить несколько городов, после чего вернуться в исходный. Следовательно, его целью будет максимально сократить пройденный путь. Если этими городами будут, например, Париж (П), Лондон (Л), Берлин (Б) и Рим (Р) и коммивояжер начинает поездку в Париже, то его секретарь может составить расписание шестью разными способами: ПЛБРП, ПЛРБП, ПБЛРП, ПБРЛП, ПРБЛП и ПРЛБП. Учитывая примерные расстояния Париж — Лондон (455 км), Париж — Берлин (1050 км), Париж — Рим (1435 км), Лондон — Берлин (1095 км), Лондон — Рим (1855 км) и Берлин — Рим (1515 км), можно рассчитать общую длину каждого маршрута и выбрать кратчайший из них:

Учитывая данные представленные в таблице оптимальным будет маршрут Париж - фото 75

Учитывая данные, представленные в таблице, оптимальным будет маршрут Париж — Лондон — Берлин — Рим — Париж или он же, но в обратном направлении: Париж — Рим — Берлин — Лондон — Париж. Но что произойдет, если коммивояжеру нужно будет посетить не три города, а четыре, пять или любое другое количество городов? Для решения этой задачи всего для двадцати городов компьютеру средней производительности потребуется 80 тысяч лет, и в свете этого возможная потеря времени от неправильного выбора маршрута уже несущественна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x