Точнее определить годы жизни Диофанта помогает письмо византийского автора XI века Михаила Пселла. В переводе с греческого письмо звучит так: «Диофант управлялся с ней (египетской арифметикой. — Примеч. автора) более умело, но образованный Анатолий объединил важнейшие части доктрины Диофанта, которую тот изложил разрозненно и сжато, и посвятил свой труд Диофанту». Пол Таннери опубликовал это письмо в одном из своих исследований и предположил, что Пселл ссылается на комментарий о Диофанте, источник которого был утерян. Возможно, он был написан Гипатией. Упоминаемый в письме Анатолий был епископом Лаодикеи, писателем и знатоком математики и жил в III веке н. э. Следовательно, можно предполагать, что Диофант написал «Арифметику» примерно в 250 году н. э. Однако не все исследователи согласны с этим переводом, поэтому предложенную дату нельзя считать окончательной.
Обложка книги «Арифметика» Диофанта, напечатанной в Базеле в 1575 году.
Как и в случае с Ферма, точный возраст Диофанта можно определить по его эпитафии. Она содержится в «Греческой антологии», составленной Метродором примерно в 500 году и. э. Одна задача из этого собрания посвящена автору «Арифметики»:
«Прах Диофанта гробница покоит; дивись ей — и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком.
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругой он обручился.
С нею пять лет проведя, сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей».
(Перевод С.П. Боброва)
Если мы обозначим возраст Диофанта за х , то его детство длилось х /6 лет, он женился по прошествии х /7 лет, его борода росла х /12 лет. Его сын родился 5 лет спустя и прожил х /2 лет. Отец умер 4 года спустя после смерти сына. Получим:
х = х /6 + х /7 + х/12 + 5 + х /2 + 4.
Умножив обе части равенства на 84, получим:
84 х = 84· х /6 + 84· х /7 + 84· х /12 + 84·5 + 84· х /2 + 84·4.
Упростим равенство:
84 х = 14 х + 12 х + 7 х + 420 + 42 х + 336.
Перенеся все члены с х в одну часть, получим:
84 х — 14 х — 12 х — 7 х — 42 х = 420 + 336.
Отсюда 9 х = 776, следовательно, х= 156/9 = 84. Таким образом, Диофант женился в 26 лет, сын родился, когда ему было 38 лет. Сын прожил 42 года — в два раза меньше, чем отец. Однако нам неизвестно, является эта задача полностью вымышленной или же, напротив, она основана на реальных событиях жизни математика.
* * *
КНИГИ «АРИФМЕТИКИ» ДИОФАНТА
«Арифметика» Диофанта состоит из 13 книг на греческом языке, из которых до нас дошли шесть. Кроме этого, в 1972 году обнаружилась арабская рукопись, включающая еще четыре книги, по содержанию не совпадающие с книгами, дошедшими до нас на греческом. В них описывается ряд задач по нахождению рациональных решений алгебраических уравнений с рациональными коэффициентами. Шесть книг на греческом содержат 189 задач. Они распределяются так:
Книга I: приведены 25 задач для уравнений первой степени и 14 — для второй степени.
Книга II состоит из 35 задач. Задача под номером 8, несомненно, самая известная из всех, так как именно она навела Ферма на мысль о его теореме.
Книга III содержит 21 задачу. Наиболее известной является 19-я, в которой впервые применяется геометрический метод решения.
Книга IV содержит 40 задач, в большинстве из них речь идет о кубах чисел.
Книга V содержит 30 задач. В 28 из них идет речь об уравнениях второй и третьей степени. Последняя, 30-я задача — это задача о смесях.
Книга VI содержит 24 задачи. Они посвящены поиску прямоугольных треугольников с рациональными сторонами.
Обложка одного из изданий «Арифметики» Диофанта, опубликованного в 1670 году сыном Фермауже после смерти отца. В это издание были включены комментарии, сделанные знаменитым математиком.
* * *
Важность «Арифметики»
Важность работы Диофанта сложно переоценить. Предложенные им задачи бросают вызов гениальности и творчеству и воспевают красоту математики. Хотя Диофант не применял сложные алгебраические обозначения, он ввел в употребление некоторые символы. Так, он обозначал сокращениями неизвестную и степени неизвестной. Это позволило упростить запись уравнений. Он также использовал сокращение, обозначавшее равенство. Поэтому его работа стала важным шагом в переходе от словесной к символьной алгебре.
Читать дальше