Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике

Здесь есть возможность читать онлайн «Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 9. Загадка Ферма. Трехвековой вызов математике: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 9. Загадка Ферма. Трехвековой вызов математике»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.

Том 9. Загадка Ферма. Трехвековой вызов математике — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 9. Загадка Ферма. Трехвековой вызов математике», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 + 2 = 3 является простым, следовательно,

(1 + 2)·2 = 3·2 = 6 — совершенное число.

1 + 2 + 4 = 7 является простым, следовательно,

(1 + 2 + 4)·4 = 7·4 = 28 — совершенное число.

1 + 2 + 4 + 8 = 13 не является простым, поэтому мы пропускаем его.

Далее

1 + 2 + 4 + 8 + 16 = 31 является простым, следовательно,

(1 + 2 + 4 + 8 + 16)·16 = 31·16 = 496 — совершенное число.

1 + 2 + 4 + 8 + 16 + 32 = 63 не является простым, поэтому мы пропускаем его.

Наконец, 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 — простое, следовательно,

(1 + 2 + 4 + 8 + 16 + 32 + 64)·64 = 127·64 = 8128 — совершенное число.

С помощью этой формулы действительно можно найти первые четыре совершенных числа. Существует и другая, более простая формула для нахождения совершенных чисел. Нетрудно видеть, что если мы складываем степени двойки, начиная с нулевой и не пропуская ни одной, то результатом будет следующая степень двойки минус один, иными словами,

1 + 2 = 3 = 4–1 = 2 2— 1;

1 + 2 + 4 = 7 = 8–1 = 2 3— 1;

1 + 2 + 4 + 8 = 15 = 16 — 1 = 2 4 — 1.

И так далее. Таким образом, мы можем преобразовать формулу Евклида и записать ее в современной математической нотации:

6 = (2 2— 1)·2

28 = (2 3— 1)·2 2

496 = (2 5— 1)·2 4

8128 = (2 7— 1)·2 6.

И всякий раз, когда 2 n — 1 простое число, (2 n — 1)·2 n -1будет совершенным числом.

Предположения о совершенных числах

Математики Античности, которым были известны первые четыре совершенных числа, выдвигали самые разнообразные предположения. Например, можно заметить, что значение n для первых четырех простых чисел является членом последовательности простых чисел 2, 3, 3, 7. Возникает соблазн предположить, что следующим совершенным числом будет (2 11— 1)·2 10, но это не так, потому что 2 11— 1 = 2047 = 23·89. Это число не является простым, следовательно, n = 11 не соответствует совершенному числу.

Также было обнаружено, что первое совершенное число имеет одну цифру, второе — две, третье — три и так далее. Следовательно, считалось, что пятое совершенное число будет иметь пять цифр. Но это не так, потому что пятым совершенным числом является (2 13— 1)· 2 12 = 8191·4096 = 33 350 336, которое имеет восемь цифр.

Древние также заметили, что последние цифры совершенных чисел чередуются: 6, 8, 6, 8, 6. Следовательно, шестое совершенное число должно заканчиваться на 8. Но и это предположение не подтвердилось, так как шестое совершенное число равно (2 17— 1)·2 16= 131 071·65 536 = 8 589 869 056 и заканчивается на 6.

Но не все предположения древних оказывались ошибочными. Они предполагали, что все совершенные числа будут четными и что с помощью данной формулы можно будет найти их все. Это очень легко предположить, но крайне сложно доказать. Лишь в XVIII веке Леонард Эйлер привел первое доказательство того, что подобным образом можно получить все четные совершенные числа. Следовательно, было доказано, что все совершенные числа оканчиваются на 6 или на 8, но эти цифры не чередуются. Но до сих пор неизвестно, существуют ли нечетные совершенные числа. Было лишь доказано, что если и существует нечетное совершенное число, то оно должно быть больше 10 300. Однако это не доказывает, что нечетных совершенных чисел не существует, ведь что значат несколько триллионов по сравнению с необозримым бесконечным рядом натуральных чисел?

Портрет Леонарда Эйлеракисти Эмануэля Хандманна Этот математик XVIII века - фото 47

Портрет Леонарда Эйлеракисти Эмануэля Хандманна. Этот математик XVIII века совершил важные открытия, касающиеся совершенных и простых чисел.

Также была выдвинута гипотеза, что совершенных чисел бесконечно много, но пока это не удалось доказать. Постоянно объявляют о том, что открыто новое простое число Мерсенна. Каждому такому числу соответствует совершенное число. В настоящее время сотни добровольцев участвуют в проекте GIMPS ( Great Internet Mersenne Prime Search ), цель которого — поиск простых чисел Мерсенна. Участники проекта загружают на свои компьютеры программу, написанную Джорджем Вольтманом.

Результат коллективных усилий был объявлен 23 августа 2008 года — было найдено самое большое на тот момент простое число Мерсенна, 2 43112609 — 1. Ему соответствует самое большое из известных совершенных чисел, 2 43112608·(2 43112609— 1), содержащее 25956376 цифр! 12 июня 2009 года было найдено еще одно простое число Мерсенна, на этот раз несколько меньшее: 2 42643801— 1. Ему соответствовало сорок шестое совершенное число, равное 2 42643800·(2 42643801— 1), состоящее из 25674128 цифр! И хотя они встречаются все реже, и каждое следующее намного больше предыдущего, никто не знает, действительно ли их на самом деле бесконечное множество. Участники проекта GIMPS продолжают поиски.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике»

Представляем Вашему вниманию похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике»

Обсуждение, отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x