3. Следующую партию выигрывает В, затем снова выигрывает В. Игра завершается со счетом 2:3 в пользу В. Вероятность этого исхода равна 0,5·0,5 = 0,25.
Подведем итог. Если игра продолжается, то вероятность выигрыша А будет равна 0,5 + 0,25 = 0,75, вероятность выигрыша Вбудет равна 0,25. В трех случаях из четырех побеждает А, следовательно, будет справедливо, если ему достанется три четверти банка.
* * *
Вероятность и ее законы
В соответствии с идеями, которые высказал еще Галилей, если существует n возможных наблюдений, имеющих одинаковую вероятность, и событие А происходит в k из этих наблюдений, то вероятность события А равна:
Иными словами,
Например, если в мешке лежит 5 шаров, 3 из которых окрашены в синий цвет, а 2 — в черный, то вероятность вытащить синий шар равна 3/3. Проще не бывает.
В некоторых случаях теоретическую вероятность можно вычислить, используя симметрию объекта, от которого зависит результат, как, например, при броске монеты или игрального кубика. Другой подход заключается в том, что вероятность рассматривается как количество наблюдений, при которых произошло событие, при бесконечном увеличении числа наблюдений. Так, чтобы узнать, какова вероятность того, что при броске монеты выпадет решка, нужно бросить монету очень много раз и посмотреть, к какому значению стремится полученное соотношение исходов. Это же верно и в случае с игральными костями. Когда мы говорим, что вероятность выпадения определенного числа очков равна 1/6, мы имеем в виду идеальную игральную кость. Реальная игральная кость может отличаться от идеальной.
Некоторые исследователи бросали монету или игральную кость множество раз и записывали полученные результаты. Одним из них был английский математик Джон Керрич, который отбывал тюремное заключение в Дании во время Второй мировой войны. Находясь в тюрьме, он бросил монету 10000 раз, при этом решка выпала 3067 раз, орел — 4933.
Соотношение числа решек к числу орлов колебалось так, как показано на следующем графике, на котором приведены не реальные данные, полученные Керричем, а результаты моделирования. По мере роста числа бросков колебания уменьшаются, и разумно предполагать, что соотношение числа исходов стремится к постоянному числу при бесконечно большом числе бросков. Это значение и будет вероятностью выпадения решки при броске этой монеты.
Изменение соотношения числа решек к числу орлов при броске монеты 10 000 раз (результаты получены с помощью моделирования).
Подобные исследования выполнили Жорж-Луи Леклерк де Бюффон, французский ученый XVIII века, который бросил монету 4000 раз (решка выпала 2048 раз), и Карл Пирсон, один из отцов современной статистики, который бросил монету 24000 раз (самостоятельно или с помощью ассистентов), из которых решка выпала 12 012 раз.
Жорж-Луи Леклерк де Бюффон. Портрет кисти Франсуа-Юбера Друз.
Наиболее известный опыт с игральными костями провел в 1850 году швейцарский астроном Рудольф Вольф, который бросил два игральных кубика (один белого, другой красного цвета) целых 20000 раз.
Полученные им результаты приведены в таблице на следующей странице.
Результаты, полученные при бросках монеты, согласуются с предположением о ее сбалансированности (вероятность выпадения решки равна 0,5), однако результаты экспериментов, проведенных с игральными костями, достаточно далеки от теоретических значений. При броске обоих кубиков, и белого, и красного, 3 и 4 очка выпадали заметно реже остальных. Представим результаты эксперимента графически, чтобы яснее увидеть эти расхождения ( К = красный кубик, Б = белый кубик). В главе 3 мы поговорим о проверке статистических гипотез и обсудим, допустимо ли в этом случае предполагать, что кубики несбалансированы.
Читать дальше