Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

Здесь есть возможность читать онлайн «Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 27. Поэзия чисел. Прекрасное и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 27. Поэзия чисел. Прекрасное и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.

Том 27. Поэзия чисел. Прекрасное и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 27. Поэзия чисел. Прекрасное и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

ПРОЖОРЛИВЫЕ ОКРУЖНОСТИ ФОРДА

Представленные ниже простые расчеты должны убедить читателя, что окружности Форда, касающиеся данной окружности, соответствующей дроби p/ q, неограниченно приближаются к точке, соответствующей этой дроби. Рассмотрим касающиеся окружности, расположенные слева от дроби p/ q. Они соответствуют дробям ( Р+ n· p)/( Q+ n· q), где n— любое натуральное число. Теперь достаточно показать, что разность между этими дробями и p/ qнеограниченно уменьшается с увеличением n:

Так как окружности соответствующие дробям p qи P Q касаются то как мы - фото 35

Так как окружности, соответствующие дробям p/ qи P/ Q, касаются, то, как мы отмечали выше, числа р· Qи Р· qбудут последовательными. Как следствие, их разность будет равна 1 или -1. С учетом этого предыдущее равенство примет вид:

Том 27 Поэзия чисел Прекрасное и математика - изображение 36

Так как nрасположено в знаменателе, то с его увеличением разность между p/ qи ( Р+ n· p)/( Q+ n· q) будет уменьшаться и в пределе, при бесконечно большом n, будет равна нулю.

* * *

Читатель согласится с тем, что окружности Форда настолько исполнены гармонии и элегантности, насколько отсутствие этих атрибутов характерно для доньи Росы; ее вздутого, как мех с оливковым маслом, живота, который Села называет «воплощением враждебности сытого к голодному».

Мартин Марко , или рациональное приближение иррациональных чисел

Оставим ненадолго донью Росу и окружности Форда и обратимся к биографии второго нашего героя — Мартина Марко, или рационального приближения иррациональных чисел.

Пифагор и пифагорейцы основывали математику и рациональное объяснение природы на том, что всю Вселенную можно свести к числам. Для пифагорейцев существовали только натуральные числа (1, 2, 3, 4, 5 и так далее) и дроби, которые можно было образовать из натуральных чисел. Тем не менее когда ученики Пифагора занялись простейшей геометрической операцией — измерением отрезков, основы их научной картины мира рухнули. Длина диагонали квадрата со стороной 1 оказалась в точности равна √2. Пифагорейцев постигло разочарование, когда они поняли, что √2 нельзя представить в виде дроби (об этом подробно рассказано на следующей странице). Что может быть проще, чем измерить диагональ квадрата? Однако даже ее нельзя точно выразить с помощью натуральных чисел и рациональных дробей. По легенде, Гиппас из Метапонта, пифагореец, раскрывший эту тайну кому-то из непосвященных, был сброшен в море с борта корабля и осужден вечно бороздить волны: «Раскрыв секрет невыразимого, он удостоился страшнейшего наказания — быть отделенным от сущего и низвергнутым в ничто, откуда прибыл».

Вскоре стало понятно, что, помимо чисел 1, 2, 3, 4, 5 и т. д., которые мы используем при счете, и дробей, которые образуются из натуральных чисел, нужны и другие, более «сложные» числа. Чтобы установить различия между «нормальными» и «сложными» числами, математики стали использовать символические названия: числа 1, 2, 3, 4, 5 и т. д. стали называться натуральными, а дроби, которые можно образовать из этих чисел, — рациональными.

Числа √2, 3√5, π , напротив, называются иррациональными, словно предупреждая об их нездоровой природе.

* * *

ИРРАЦИОНАЛЬНОСТЬ КОРНЯ ИЗ 2

В доказательстве подобных утверждений проявляется изумительная сила логических рассуждений математики. Так как существует бесконечное множество дробей и мы не можем проверить их все, то как мы можем быть уверены в том, что не существует дроби, которая при умножении на саму себя будет равна 2? Используем революционное изобретение древних греков — доказательство, то есть корректное логическое обоснование математического утверждения. Взяв за основу очевидный факт, посредством логических рассуждений, каждое из которых логически выводится из предыдущих, мы доказываем истинность другого, неочевидного, факта. Первое доказательство, о котором мы расскажем, приписывается самому Пифагору и звучит так. Заметим, что всякая дробь имеет эквивалентную ей несократимую дробь, числитель и знаменатель которой не имеют общих делителей. Если существует несократимая дробь (обозначим ее через p/ q), которая при умножении на саму себя равняется 2 (иными словами, p/ q· p/ q = 2), должно выполняться равенство р· р = 2· q· q. Покажем, что это невозможно. Если р· р = 2· q· q, то р· р— четное число; иными словами, оно в два раза больше некоторого другого числа. Так как квадрат нечетного числа — всегда нечетное число, рдолжно быть четным. Следовательно, число р в два раза больше некоторого другого числа, которое мы обозначим через k (иными словами, р = 2· k). Подставив это выражение в вышеуказанное равенство, получим 2· k·2· k = 2· q· q, или, что аналогично, 2· k· k = q· q. Следовательно, q· q— четное число, поэтому qтакже будет четным. Однако это невозможно, так как если дробь p/ qявляется несократимой, числитель и знаменатель не могут быть четными одновременно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика»

Представляем Вашему вниманию похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика»

Обсуждение, отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x