Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь есть возможность читать онлайн «Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 28. Математика жизни. Численные модели в биологии и экологии.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 28. Математика жизни. Численные модели в биологии и экологии.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 28. Математика жизни. Численные модели в биологии и экологии.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Аттрактор Лоренца элементарная модель климата Любопытно что известный - фото 192

Аттрактор Лоренца — элементарная модель климата.

Любопытно, что известный эффект бабочки описал сам Лоренц в 1972 году. Его исходная формулировка звучала так: «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?». На практике это означает, что даже малейшие изменения начальных условий, исчисляемые несколькими знаками после запятой, оказывают огромное влияние на погоду. Если сегодня в определенном месте наблюдается погода, которой соответствует точка ( х, у, z ) на правом «крыле бабочки», то погода в ближайшие дни будет описываться траекторией, берущей начало в точке ( х, у, z ).

Погода будет более или менее схожа с сегодняшней, если эта траектория будет принадлежать правому «крылу бабочки». Однако может случиться, что она достигнет левого «крыла бабочки», и прогноз существенно изменится.

Это изменение зависит от метеорологических параметров атмосферы «на сегодня», то есть от начальных условий модели: траектория, описывающая погоду в последующие дни, будет иметь тот или иной вид в зависимости от начальных условий в точке ( х, у, z ). И если погода представляет собой хаотическую систему, ее прогноз является прогнозом «индивидуальной траектории» в аттракторе климата. На практике погоду, то есть «индивидуальную траекторию», можно спрогнозировать на основе начальных условий, то есть погоды на сегодняшний день. В решении этой задачи метеорологам помогают мощные компьютеры, в которых используются климатические модели с намного большим числом переменных, чем три.

Кроме того, прогнозирование усложняется еще и потому, что климат в разных частях Земли описывается различными сценариями. В средних широтах и в тропиках погода существенно отличается. В средних широтах любое изменение погоды вызывается атмосферными явлениями, в то время как погода в тропиках определяется взаимодействием атмосферы и океана, известным как Эль-Ниньо. Самые известные его проявления — это ураганы и муссоны. Более того, некоторые явления, наблюдаемые в Тихом океане, вносят элемент неопределенности в начальное состояние атмосферы, на основе которого составляется прогноз погоды.

Карта с прогнозом атмосферного давления на пять дней вперед В 1963 году - фото 193

Карта с прогнозом атмосферного давления на пять дней вперед.

В 1963 году благодаря Лоренцу стало известно, насколько сложно составление точных прогнозов ввиду хаотической природы климата. Поэтому ученые решили использовать различные математические модели или начальные условия и значения параметров и составлять на их основе различные прогнозы. Существуют методы, которые позволяют оценить согласованность или степень совпадения различных прогнозов и получить средний прогноз. В этой методике также учитывается, сколько раз прогноз погоды оказывался верным для каждой модели из множества используемых. Этот подход, в котором вместо единственной модели, как во времена фон Неймана и ENIAC, используется множество моделей климата, называется мультимодельным (англ, multi-model ensemble ).

* * *

ДЖЕЙМС ЛАВЛОК И ГИПОТЕЗА ГЕИ

Джеймс Лавлок — английский исследователь (род. в 1919 году), известный как автор гипотезы Геи. Согласно Лавлоку, живые организмы отвечают за поддержание земной атмосферы. Суша, океаны, живые существа и атмосфера в совокупности образуют кибернетическую систему. Идею о кибернетической системе развила американский исследователь Линн Маргулис. Она предположила, что планета Земля в действительности представляет собой суперорганизм, способный регулировать условия, благодаря которым возможны эволюция и поддержание жизни.

Идеи Джеймса Лавлока и Линн Маргулис разделяют не все. Несогласие с ними с самого начала выразили эволюционные биологи Стивен Джей Гулд и Ричард Докинз. Дарвинисты выдвинули вопрос: быть может, именно окружающая среда отбирает живых организмов в соответствии с дарвиновской теорией эволюции путем естественного отбора? И если это так, то как объяснить, что живые организмы медленно видоизменяют окружающую среду, в которой обитают, делая ее более благоприятной для себя? Несмотря на эти возражения, существуют примеры, подтверждающие гипотезу Геи. Так, бактерии и водоросли поддерживают температуру земной поверхности, регулируют соленость морей и участвуют в накоплении углерода в осадочных горных породах. Согласно этой экологической гипотезе, вмешательство бактерий и водорослей в окружающую среду в кибернетике описывается циклами обратной связи. В качестве примера подобного механизма можно привести систему кондиционирования воздуха в комнате: повышение или понижение температуры в комнате выявляется термостатом, после чего система кондиционирования соответственно нагревает или охлаждает воздух.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Представляем Вашему вниманию похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Паустовский - Том 5. Повесть о жизни. Книги 4-6
Константин Паустовский
Константин Паустовский - Том 4. Повесть о жизни. Книги 1-3
Константин Паустовский
Отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Обсуждение, отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x