Неприятная музыка
Используя технологии, разработанные в 1950-х для улучшения морских гидролокаторов, математик Скотт Рикард создал музыкальное произведение без повторов, но это не значит, что оно было абсолютно беспорядочно, и назвал его «самой неприятной музыкой в мире».
Математическое понятие: комбинаторика
Многие игры имеют математическое подспорье, но, пожалуй, одна из них выделяется больше всех – это игра Го. Считается, что она была изобретена в Китае примерно 4000 лет назад. Эта игра особенно популярна в Китае, Японии и Корее и постепенно завоевывает западное сознание. (Например, американская ассоциация Го была создана лишь в 1935 году.) Правила игры просты: у одного игрока есть коллекция черных камней, а у другого – белых. Доска, которая обычно сделана из дерева, разделена на 19 × 19 линий, то есть сетка состоит из 19 полос и 19 столбиков. Игроки ставят камни на пересечении линий сетки с целью захвата и защиты территории. Вы можете захватить вражеский камень, окружив его своими камнями. Когда камень окружен, его убирают с доски.
Го практически утопает в математике. Например, посчитайте количество допустимых позиций: чуть больше, чем 2 × 10 170, а когда вы узнаете, что число атомов в известной нам Вселенной равно примерно 10 84, то эта цифра покажется еще невероятнее. Большие числа появляются также, когда вы сравниваете Го с шахматами. Когда в шахматы играет компьютерная программа, она может проанализировать последствия каждого хода, вплоть до семи ходов вперед. Но если компьютер применил бы эту технику к Го, то у него бы быстро случилась перегрузка. В шахматах компьютер может прорабатывать до 60 миллиардов возможностей во время каждого хода. Однако, чтобы думать на семь ходов вперед в Го, компьютеру придется просмотреть 10 000 триллионов возможностей.
Эта игра также помогла появиться совершенно новому классу чисел. В 1970 году математик Джон Конвей из Кембриджского университета изучал игру Го, в которую играли два мастера, и в результате пришел к идее сюрреальных чисел. Вы можете рассматривать сюрреальные числа как наборы инструкций, чтобы найти определенные числа на числовой прямой с помощью серии движений вверх и вниз. Все действительные числа – которые состоят из целых чисел, дробей, положительных, отрицательных и иррациональных чисел – считаются сюрреальными, но некоторые сюрреальные числа не являются действительными. В сущности, сюрреальные числа – это новый набор чисел (как рациональные или целые числа), которые вы можете найти на числовой прямой с помощью серии ходов: вниз, вверх, влево, вправо. Одним особенно большим сюрреальным числом является омега, это число на числовой прямой, когда вы следуете вправо бесконечное количество времени. (Омега – это наименьшее сюрреальное число, которое больше, чем любое действительное число.) В любом случае, толчком для этого открытия стала игра Го, и по сей день она приносит математическое удовольствие миллионам людей по всему миру.
Отелло
Отелло – это игра, чем-то напоминающая Го, ее изобрели в 1880-х два англичанина, изначально она называлась Реверси, хотя игры имеют достаточные различия. В обеих играх игроки окружают камни противника, в Отелло окруженные камни, черные с одной стороны и белые с другой, переворачиваются. В Го окруженные камни остаются того же цвета. Кроме того, доска в Отелло имеет разлиновку 8 × 8, что куда меньше, чем 19×19 в Го.
3.5. Шахматная доска и пшеница
Математическое понятие: геометрическая прогрессия
Существует история, согласно которой визирь при дворе короля Ширхама в Индии Сисса Бен Дахир изобрел игру в шахматы. Довольный изобретением Дахира король Ширхам предложил ему выбрать в качестве дара то, что он захочет. Сисса Бен Дахир попросил, казалось бы, безобидный дар: одно зерно пшеницы за первый квадрат шахматной доски, два за второй, четыре за третий и так далее, каждый последующий квадрат получал в два раза больше зерна, чем предыдущий. Мы можем представить этот процесс в виде суммирования: 2 0+ 2 1+ 2 2+ 2 3+… 2 63. (Мы остановились на 63, так как, хоть и на доске 64 квадрата, степень первой 2 равна 0, а не 1.) Такое суммирование, где число остается неизменным, а степень растет с каждым шагом прогрессии, называется геометрической прогрессией. И хоть и кажется, что сумма будет не такой уж большой, она на самом деле будет огромной. На деле это число будет равно числу шагов, которые необходимы, чтобы решить задачу Ханойской башни, то есть 18 446 744 073 709 551 615 (см. главу 3.4). Если предположить, что в тонне пшеницы примерно 100 миллионов зерен, Сисса Бен Дахир попросил примерно 200 миллиардов тонн пшеницы. Действительно ошеломительное количество.
Читать дальше
Конец ознакомительного отрывка
Купить книгу