Рафаель Роузен - Математика для гиков

Здесь есть возможность читать онлайн «Рафаель Роузен - Математика для гиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика для гиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика для гиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Математика для гиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика для гиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот принцип можно использовать и чтобы определить, что два человека в Нью-Йорке имеют одинаковое количество волос на голове. У каждого человека примерно 100 000 волос на голове, а в Нью-Йорке живут примерно 8 миллионов человек. Так как существует 100 000 вероятностей количества волос на любой человеческой голове, тогда, скажем, что у нас есть 100000 ящиков. А 8 миллионов жителей Нью-Йорка соответствуют 8 миллионам голубей, следовательно, мы можем быть уверенными, что как минимум два голубя – или человека – занимают одну коробку, то есть у них одинаковое количество волос на голове.

По-английски принцип голубей и ящиков звучит как «pigeonhole principle», но иногда слово «pigeonhole» используется в контексте без ссылок на голубей и контейнеры. В Конгрессе используют словосочетание «to pigeonhole a bill», что значит «отложить законопроект в долгий ящик», грубо говоря, положить его на полку и на время о нем забыть.

38 Лабиринты Математические понятия теория графов топология Лабиринты - фото 84

3.8. Лабиринты

Математические понятия: теория графов, топология

Лабиринты давно являются частью поп-культуры, начиная от мифов о Тесее и Минотавре и заканчивая медитативными церковными лабиринтами Средневековья; от кукурузных лабиринтов, которые появляются в сельской местности осенью, до фильмов «Лабиринт» и «Бегущий в лабиринте». Но в то время, как они интригуют своей красотой, они еще являются частью семьи математических объектов.

Изучением лабиринтов занимаются теория графов и топология, разделы, которые рассматривают объекты схематически (похоже на анализ метро в главе 1.9). Если вы подумаете о лабиринте абстрактно, не размышляя о поворотах, которые вам придется делать, или о высоте стен или текстуре земли под ногами, вы увидите его как путь, который на определенном моменте сворачивает в новом направлении. Каждую такую точку мы можем назвать узлом. Дорога, соединяющая два узла друг с другом, называется ребром. Если мы посмотрим на лабиринт сверху, мы можем сделать рисунок, своего рода диаграмму, состоящую из узлов и ребер. После разметки всех узлов мы смогли бы увидеть путь, который привел бы нас к концу лабиринта.

Этот вид анализа впервые был проведен Леонардом Эйлером, швейцарским математиком, который жил в 1700-х. Он решил проблему, известную как Семь мостов Кенигсберга, и тем самым основал раздел теории графов. Проблема была основана на реальном городе Кенигсберг в Пруссии. Река Преголя протекала через город, а посреди реки был остров. После того как река проходила мимо острова, она разделялась на две части. Семь мостов соединяли остров с материком, и местные жители интересовались, можно ли пересечь каждый мост только один раз и вернуться в исходную точку, не пройдя ни по одному из них дважды. Представив мосты, остров и материк как абстрактную сеть, состоящую из узлов и ребер, Эйлер доказал, что такого пути не существует.

Минотавр

В лабиринте есть только одна дорога, ведущая от входа напрямую до центра. Говорят, что один известный лабиринт был построен по приказу царя Миноса под Кносским дворцом примерно 3000 лет назад на острове Крит. Согласно легенде, царь Минос построил лабиринт, чтобы заточить Минотавра, существо, рожденное от союза царицы и быка. Минос приказал жителям Афин присылать ему семь молодых мужчин и женщин каждый год, которых потом помещали в лабиринт на съедение Минотавру. Тесей решил положить конец этой ужасной традиции. Он вызвался добровольцем, и когда они все предстали перед царем, дочь царя Ариадна влюбилась в Тесея. Она дала ему клубок нити, чтобы он смог найти дорогу назад. Тесей убил Минотавра и выбрался из лабиринта, но по дороге назад в Афины он забыл поменять черные паруса на белые, так как это был знак отцу, что он выжил в схватке с Минотавром. Отец Тесея Эгей увидел четыре паруса и, сраженный печалью, бросился в океан.

39 Сколько подсказок вам понадобится чтобы разгадать головоломку Судоку - фото 85

3.9. Сколько подсказок вам понадобится, чтобы разгадать головоломку Судоку?

Математическое понятие: числовые головоломки

Судоку – это, возможно, одна из самых наших любимых головоломок, но это не просто способ убить несколько свободных секунд (или часов). Затягивающая числовая головоломка также содержит в себе некоторые интересные математические крупицы.

Судоку состоит из сетки 9 × 9, один квадрат состоит из меньшей сетки 3 × 3. В каждом квадрате игрок должен заполнить клетки цифрами от 1 до 9 так, что каждое число появляется только один раз в ряду и колонке всего большого квадрата. Кроме того, каждое число должно появляться один раз в каждом квадрате 3 × 3. Создатель головоломки раскидывает несколько цифр в квадрате, они являются подсказками, которые помогают игроку решить задачу. Еще одной особенностью судоку является то, что у каждой головоломки есть только одно решение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика для гиков»

Представляем Вашему вниманию похожие книги на «Математика для гиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика для гиков»

Обсуждение, отзывы о книге «Математика для гиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x