Водитель на одном из маршрутов не будет иметь причины, чтобы поменять его, так как он не сэкономит на этом время. (В такой ситуации, когда вовлечено множество людей и каждый понимает, что будет делать другой на его месте, и никто не собирается менять свою стратегию, люди находятся в равновесии Нэша – см. главу 2.14).
Теперь представим, что между маршрутами построили более короткий путь в том месте каждого маршрута, где встречаются два участка. Эту дорогу можно проехать очень быстро. Теперь водители обоснованно захотят использовать один и тот же маршрут: они могли бы проехать участок Т/5 маршрута А, потом поехать по короткому пути, а потом по участку Т/5 маршрута Б. (Такой путь будет иметь зигзагообразную форму.) Но естественно, что все 200 водителей захотят так поехать, чтобы сократить время в пути, то есть путь займет 200/5 + 200/5, или 80 минут. Водители будут знать, что могут срезать дорогу, поэтому все выберут этот маршрут. В результате транспортный поток ухудшится.
Идея сокращения вариантов выбора для улучшения условий движений была использована в реальных городах, включая Сеул, столицу Южной Кореи. Когда шестиполосная дорога, проходящая через центр города, была демонтирована в середине 2000-х и на ее месте построили парк длиной в 5 миль, движение на самом деле стало более эффективным. Машины ехали по дорогам, которые уже существовали. Результат, может, бросил вызов здравому смыслу, но математика помогла открыть его мудрость.
Линии электропередач
Парадокс Браеса применяется не только к дорожному движению. В исследовании, опубликованном в 2012 году, ученые из института динамики и самоорганизации Макса Планка показали, что добавление линий электропередач к электросети не обязательно повышает ее производительность. Вместо этого новые линии могут в конечном итоге дестабилизировать ее, в зависимости от того, где они находятся по отношению к существующим линиям; поэтому меньшее количество линий иногда приводит к большей эффективности электросети.
2.25. Сколько раз вы можете сложить лист бумаги?
Математическое понятие: экспоненциальный рост
Возьмите в руки лист бумаги. Сложите его пополам. Теперь опять сложите его пополам. Как долго, по вашему мнению, вы сможете его складывать? Эта математическая задача известна как проблема простыни, но она также с легкостью применима и к бумаге, полотенцам, фольге, лапше и всему, что вы можете сложить. В течение многих лет математики считали, что нельзя ничего согнуть больше 7 раз. Однако в 2002 году учащаяся средней школы в городе Помона, штат Калифорния, установила рекорд, сложив очень длинный лист туалетной бумаги – длиной в 4000 футов, если быть точным – 12 раз. Она это сделала, складывая в одном направлении и только после расчетов, которые установили длину бумаги, которой она должна обладать.
И что? Складывание чего-нибудь пополам вновь и вновь – это хороший пример для понимания экспоненциального роста. Когда размер (или число) растет экспоненциально, то на каждом этапе он принимает большее значение, а так как базисная величина растет каждый раз, то результат также очень быстро растет. Например, давайте возьмем обычный лист из блокнота с отрывными листами, толщина которого примерно составляет 1/10 миллиметра. Сложив его пополам, мы получим толщину, равную 2/10 миллиметра, сложив лист еще раз, мы получим 4/10 миллиметра. После того как мы сложим его 25 раз, толщина бумаги будет составлять 1 километр. После того как мы сложим его 42 раза, его толщины хватит, чтобы достать до Луны. После того как мы сложим его 81 раз, толщина бумаги охватит 127 786 световых лет. А после того, как мы сложим его 103 раза, бумага займет больше пространства, чем видимая часть Вселенной (примерно 93 миллиарда световых лет).
Проблема туалетной бумаги
Специалист по компьютерным наукам Дональд Кнут однажды провел исследование о двухроликовых диспенсерах туалетной бумаги в общественных туалетах, в процессе он разделил людей на две группы. Одни берут бумагу из большего рулона, другие – из меньшего. В его исследовании он изучил вероятность того, к какому типу относится тот или иной человек и как это влияет на количество бумаги, оставшейся на рулоне, используя разные математические уравнения.
2.26. Да, существует более эффективный способ посадки на самолет
Читать дальше
Конец ознакомительного отрывка
Купить книгу