Рафаель Роузен - Математика для гиков

Здесь есть возможность читать онлайн «Рафаель Роузен - Математика для гиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика для гиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика для гиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Математика для гиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика для гиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Водитель на одном из маршрутов не будет иметь причины, чтобы поменять его, так как он не сэкономит на этом время. (В такой ситуации, когда вовлечено множество людей и каждый понимает, что будет делать другой на его месте, и никто не собирается менять свою стратегию, люди находятся в равновесии Нэша – см. главу 2.14).

Теперь представим, что между маршрутами построили более короткий путь в том месте каждого маршрута, где встречаются два участка. Эту дорогу можно проехать очень быстро. Теперь водители обоснованно захотят использовать один и тот же маршрут: они могли бы проехать участок Т/5 маршрута А, потом поехать по короткому пути, а потом по участку Т/5 маршрута Б. (Такой путь будет иметь зигзагообразную форму.) Но естественно, что все 200 водителей захотят так поехать, чтобы сократить время в пути, то есть путь займет 200/5 + 200/5, или 80 минут. Водители будут знать, что могут срезать дорогу, поэтому все выберут этот маршрут. В результате транспортный поток ухудшится.

Идея сокращения вариантов выбора для улучшения условий движений была использована в реальных городах, включая Сеул, столицу Южной Кореи. Когда шестиполосная дорога, проходящая через центр города, была демонтирована в середине 2000-х и на ее месте построили парк длиной в 5 миль, движение на самом деле стало более эффективным. Машины ехали по дорогам, которые уже существовали. Результат, может, бросил вызов здравому смыслу, но математика помогла открыть его мудрость.

Линии электропередач

Парадокс Браеса применяется не только к дорожному движению. В исследовании, опубликованном в 2012 году, ученые из института динамики и самоорганизации Макса Планка показали, что добавление линий электропередач к электросети не обязательно повышает ее производительность. Вместо этого новые линии могут в конечном итоге дестабилизировать ее, в зависимости от того, где они находятся по отношению к существующим линиям; поэтому меньшее количество линий иногда приводит к большей эффективности электросети.

225 Сколько раз вы можете сложить лист бумаги Математическое понятие - фото 77

2.25. Сколько раз вы можете сложить лист бумаги?

Математическое понятие: экспоненциальный рост

Возьмите в руки лист бумаги. Сложите его пополам. Теперь опять сложите его пополам. Как долго, по вашему мнению, вы сможете его складывать? Эта математическая задача известна как проблема простыни, но она также с легкостью применима и к бумаге, полотенцам, фольге, лапше и всему, что вы можете сложить. В течение многих лет математики считали, что нельзя ничего согнуть больше 7 раз. Однако в 2002 году учащаяся средней школы в городе Помона, штат Калифорния, установила рекорд, сложив очень длинный лист туалетной бумаги – длиной в 4000 футов, если быть точным – 12 раз. Она это сделала, складывая в одном направлении и только после расчетов, которые установили длину бумаги, которой она должна обладать.

И что? Складывание чего-нибудь пополам вновь и вновь – это хороший пример для понимания экспоненциального роста. Когда размер (или число) растет экспоненциально, то на каждом этапе он принимает большее значение, а так как базисная величина растет каждый раз, то результат также очень быстро растет. Например, давайте возьмем обычный лист из блокнота с отрывными листами, толщина которого примерно составляет 1/10 миллиметра. Сложив его пополам, мы получим толщину, равную 2/10 миллиметра, сложив лист еще раз, мы получим 4/10 миллиметра. После того как мы сложим его 25 раз, толщина бумаги будет составлять 1 километр. После того как мы сложим его 42 раза, его толщины хватит, чтобы достать до Луны. После того как мы сложим его 81 раз, толщина бумаги охватит 127 786 световых лет. А после того, как мы сложим его 103 раза, бумага займет больше пространства, чем видимая часть Вселенной (примерно 93 миллиарда световых лет).

Проблема туалетной бумаги

Специалист по компьютерным наукам Дональд Кнут однажды провел исследование о двухроликовых диспенсерах туалетной бумаги в общественных туалетах, в процессе он разделил людей на две группы. Одни берут бумагу из большего рулона, другие – из меньшего. В его исследовании он изучил вероятность того, к какому типу относится тот или иной человек и как это влияет на количество бумаги, оставшейся на рулоне, используя разные математические уравнения.

2.26. Да, существует более эффективный способ посадки на самолет

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика для гиков»

Представляем Вашему вниманию похожие книги на «Математика для гиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика для гиков»

Обсуждение, отзывы о книге «Математика для гиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x