Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы вычислить ожидаемую ценность, о которой говорил Паскаль, нам необходимо знать вероятность существования Бога. Представим себе на мгновение, что мы глубоко сомневаемся в этом, и присвоим данной гипотезе вероятность в размере всего 5 %. Если мы верим в Бога и окажемся правы, тогда наше вознаграждение – «вечная радость», или, если говорить в экономических терминах, бесконечно большое количество ютилей [191]. Если мы верим в Бога и окажемся неправы (результат, в котором мы уверены на 95 %), тогда мы заплатим за это свою цену; может быть, даже нечто большее, чем «один день исполнения долга на земле», как предположил Паскаль, поскольку мы должны учесть не только время, потраченное на выполнение религиозных обрядов, но и ценность тех мирских удовольствий, которые мы упустили в поисках спасения. Тем не менее это фиксированная сумма, скажем, сто ютилей.

В таком случае ожидаемая ценность веры равна:

(5 %) × бесконечность + (95 %) (−100).

Итак, 5 % – это малая величина, однако бесконечная радость – очень много радости, а значит, 5 % от этого количества по-прежнему представляют собой бесконечную величину. Следовательно, эта бесконечная радость захлестнет нас, чего бы нам ни стоило принятие религии.

Мы уже говорили об опасности попыток присвоить ту или иную числовую вероятность такой гипотезе, как «Бог есть». Непонятно, имеет ли вообще какой-то смысл такое присвоение вероятности. Однако Паскаль вообще не предпринимает никаких рискованных действий с числами. Ему это не нужно, поскольку не играет роли, какое это число – 5 % или какое-то другое. Один процент от бесконечного блаженства – это все то же бесконечное блаженство, превосходящее любые конечные издержки, которые влечет за собой жизнь в добродетели. Это можно сказать о величине 0,1 % или 0,000001 %. Важно только одно: что вероятность существования Бога не равна нулю . Разве вы не должны согласиться с этой мыслью? Что существование Бога как минимум возможно ? Если да, то вычисление ожидаемой ценности дает однозначный результат: верить стоит. Ожидаемая ценность такого выбора – это не просто положительная, а бесконечно положительная величина.

У аргументации Паскаля есть серьезные недостатки. Самый большой из них заключается в наличии той же проблемы «Кота в шляпе», о которой мы говорили в десятой главе: Паскаль не смог проанализировать все возможные гипотезы. В его схеме существует всего два варианта: что христианский Бог действительно существует и вознаградит определенную группу верующих, или что Бога нет. Но что если существует Бог, который вовеки проклинает христиан? Разумеется, такой Бог тоже возможен, и одной только этой возможности достаточно, чтобы уничтожить аргумент Паскаля: теперь, приняв христианство, мы рассчитываем на возможность бесконечной радости, но при этом оказываемся под угрозой бесконечных мучений, и у нас нет надежного способа взвесить относительную вероятность этих двух вариантов. Мы вернулись к тому, что разум ничего решить не может.

Вольтер выдвинул другое возражение. Возможно, вам казалось, что он должен одобрительно относиться к пари Паскаля: как мы уже видели, он не имел ничего против азартных игр. Вольтер любил математику; его отношение к Ньютону граничило с поклонением (однажды он назвал его Богом, которого он почитает). Кроме того, на протяжении многих лет Вольтер поддерживал романтические отношения с математиком Эмили дю Шатле. Однако Паскаль не относился к числу мыслителей, которыми Вольтер восхищался. Между этими двумя людьми были огромные разногласия как личностного, так и философского характера. В жизнеутверждающем мировоззрении Вольтера не было места мрачным, мистическим всплескам мысли погруженного в себя Паскаля. Он называл Паскаля «возвышенным мизантропом» и посвятил длинное эссе опровержению «Мыслей» – одного фрагмента за другим [192] {181}. Вольтер относился к Паскалю как признанный умница и всеми обласканное дитя к вечно унылому, ни во что не вписывающемуся зануде.

Что касается так называемого пари из параграфа 233, то Вольтер считал его «немного неприличным и ребяческим; эта идея игры, выигрыша и проигрыша не подобает серьезности предмета. …Более того, моя заинтересованность в том, чтобы во что-то верить, не является доказательством существования этой вещи» [193]. Сам Вольтер, будучи человеком жизнерадостным, склоняется к неформальному аргументу о замысле: посмотрите на этот мир, посмотрите, как он прекрасен, а значит, Бог есть, что и требовалось доказать!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x