Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир

Здесь есть возможность читать онлайн «Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Кому нужна математика? Понятная книга о том, как устроен цифровой мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Если вы хотите найти ответ на вопрос «Зачем мне математика?», эта книга для вас. В ней рассказывается о современных приложениях математики, без которых невозможно существование авиации, страхования, железных дорог, медицины, интернета, экономики… Список можно продолжать долго, но проще будет сказать – невозможно существование современного мира, каким мы его знаем.
Эта книга будет полезна широкому кругу читателей, но для наиболее заинтересованных и подготовленных читателей авторы добавили дополнительные сведения, объединив их в специальном приложении.

Кому нужна математика? Понятная книга о том, как устроен цифровой мир — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Кому нужна математика? Понятная книга о том, как устроен цифровой мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Допустим, нам нужно послать землекопов на объекты и мы хотим минимизировать стоимость работ. Для начала мы берем совершенно произвольное расписание и получаем стоимость работ, скажем 50 000 рублей. Это наш максимум, и мы постараемся его уменьшить.

Теперь запускаем симплекс-метод и получаем дробное решение. Например, на объект А нужно отправить 2 и 2/3 землекопа. Допустим, общая стоимость работ при этом составит 40 000 рублей. Это пока не дает нам плана работ, потому что решение не в целых числах. Зато мы знаем, что это решение оптимальное, то есть при любом другом (в том числе целочисленном) решении стоимость получится никак не меньше 40 000 рублей. Значит, наша стоимость в результате будет между 40 000 и 50 000 рублей.

Дальше начинаем «разветвлять» решение. У нас есть два варианта: A ≤ 2 и A ≥ 3. Для каждого из них мы снова решаем задачу линейного программирования. Допустим, стоимость получилась 43 000 рублей при A ≥ 3 и 51 000 при A ≤ 2. Отсекаем вариант A ≤ 2, поскольку у нас уже есть более выгодное решение. В результате делаем вывод, что A ≥ 3, а минимальная стоимость теперь 43 000 рублей. Если при этом все переменные получились целочисленные, то мы нашли решение. А если у нас еще остались дробные переменные, то каждую из них разветвляем снова. И так до тех пор, пока не найдем решения в целых числах.

Назад к Главе 2

Приложения к главе 3

1. Число последовательностей из нулей и единиц заданной длины

Для начала рассмотрим последовательности длины 5. Сколькими способами мы можем выбрать первый элемент последовательности? Очевидно, что вариантов 2: ноль или единица. Теперь давайте посмотрим на второй элемент. Для него у нас тоже есть два варианта, причем при любом выборе первого элемента последовательности. Значит, число способов выставить друг за другом первые два элемента равно четырем. Точно так же для каждого из этих четырех вариантов есть два способа выбрать третий элемент последовательности и так далее. В итоге для кодового слова длины 5 получаем

2 × 2 × 2 × 2 × 2 = 2 5= 32.

Аналогично число разных последовательностей длины 4 равно 2 4= 16, а число разных последовательностей длины 8 равно 2 8= 256. Для любой заданной длины n получаем 2 n разных последовательностей из нулей и единиц.

2. Граница Хэмминга

Допустим, мы пользуемся словами длиной n и наш код состоит из N таких слов.

Если код исправляет d ошибок, то шары Хэмминга с центрами в кодовых словах и радиусами d попарно не пересекаются. Объем шара (то есть количество слов в нем) нетрудно вычислить. Сколько слов отстают от центра шара на заданное расстояние k ? Разумеется, столько, сколькими способами можно выбрать те k позиций из n возможных, в которых произойдут помехи. Это число способов называется числом сочетаний из п по k и обозначается C k n . Для того чтобы его записать, нам понадобятся произведения вида

k × ( k − 1) × … × 2 × 1.

Такое произведение принято обозначать записью

k !

и она читается как k факториал. Легко увидеть, что, конечно, 1! = 1, и принято считать, что 0! = 1. Заметим, что факториал уже встречался нам в главе 2 в разделе «Проклятие размерности». Там мы показали, что факториал растет очень быстро. Например, 25! – это колоссальное число.

Число сочетаний вычисляется по формуле

Мы приводим вывод этой известной формулы ниже в приложении 3 Легко проверить - фото 48

Мы приводим вывод этой известной формулы ниже, в приложении 3. Легко проверить, скажем, что C¹ n , и действительно мы можем выбрать одну позицию из n ровно n способами.

Значит, всего внутри шара

слов Здесь слагаемое C 0 n 1 это число слов отстоящих от центра на - фото 49

слов. Здесь слагаемое C 0 n =1 – это число слов, отстоящих от центра на расстояние 0. Такое слово только одно – сам центр. Поскольку шары с центрами в кодовых словах попарно не пересекаются, то всего в них находится

различных слов Но это количество заведомо не превосходит числа всех возможных - фото 50

различных слов. Но это количество заведомо не превосходит числа всех возможных кодовых слов, которое, как мы уже знаем, равно 2n . Таким образом,

Эта формула и есть граница Хэмминга В нашем примере когда n 10 d 2 - фото 51

Эта формула и есть граница Хэмминга. В нашем примере, когда n = 10, d = 2, получаем

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»

Представляем Вашему вниманию похожие книги на «Кому нужна математика? Понятная книга о том, как устроен цифровой мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»

Обсуждение, отзывы о книге «Кому нужна математика? Понятная книга о том, как устроен цифровой мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x