Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир

Здесь есть возможность читать онлайн «Андрей Райгородский - Кому нужна математика? Понятная книга о том, как устроен цифровой мир» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Кому нужна математика? Понятная книга о том, как устроен цифровой мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Если вы хотите найти ответ на вопрос «Зачем мне математика?», эта книга для вас. В ней рассказывается о современных приложениях математики, без которых невозможно существование авиации, страхования, железных дорог, медицины, интернета, экономики… Список можно продолжать долго, но проще будет сказать – невозможно существование современного мира, каким мы его знаем.
Эта книга будет полезна широкому кругу читателей, но для наиболее заинтересованных и подготовленных читателей авторы добавили дополнительные сведения, объединив их в специальном приложении.

Кому нужна математика? Понятная книга о том, как устроен цифровой мир — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Кому нужна математика? Понятная книга о том, как устроен цифровой мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

( q ( n )) n− 1.

Поскольку всего вершин п, то в среднем число вершин, которые не соединены ребрами ни с одной другой вершиной, составит

n ( q ( n )) n− 1.

Возьмем, как и прежде,

Вспомните один известный замечательный предел где е основание натурального - фото 60

Вспомните один известный замечательный предел

где е основание натурального логарифма Интуитивно результат следует из - фото 61

где е – основание натурального логарифма. Интуитивно результат следует из похожего предельного перехода:

Давайте посмотрим о чем нам говорит эта формула Если c 1 то в среднем - фото 62

Давайте посмотрим, о чем нам говорит эта формула.

Если c < 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к бесконечности. В этом случае таких вершин будет очень много, связность сети с большой вероятностью будет потеряна.

Если c > 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к нулю. Значит, с большой вероятностью таких вершин не будет и связность сети сохранится.

Таким образом, мы видим, откуда появляется фазовый переход!

Наконец, если c = 1, то в среднем число вершин, у которых нет ни одного ребра, равно единице. Заметим, что единица – это среднее значение, а в реальности таких вершин может быть 0, 1, 2… Можно доказать, что соответствующее распределение вероятности близко к закону Пуассона с параметром 1:

Соответственно вероятность того что таких вершин не будет то есть связность - фото 63

Соответственно, вероятность того, что таких вершин не будет, то есть связность сети сохранится, равна е –1.

Добавим, что это еще не строгое доказательство, потому что мы проанализировали только среднее количество вершин, у которых нет ни одного ребра. Для завершения доказательства нужно еще показать, что в случае c < 1 и c > 1 число вершин без ребер относительно м а ло отклоняется от среднего значения. Для этого разработаны стандартные методы, в частности, основанные на неравенствах Маркова и Чебышева. Эти неравенства названы в честь замечательных русских математиков, стоявших у истоков теории вероятностей.

Назад к Главе 4

Приложение к главе 5

Анализ метода выбора из двух

Допустим, у нас n серверов. Заявки (или задания) поступают с интенсивностью λ n в единицу времени, и каждый сервер в среднем обрабатывает одно задание в единицу времени, то есть загрузка системы равна λ < 1 (если λ ≥1, то система перегружена, очередь будет расти до бесконечности). Рассмотрим случай, когда n очень велико и стремится к бесконечности.

Обозначим через f k долю серверов, у которых ровно k заявок (заявка, которая находится на обслуживании в данный момент, тоже учитывается). Обозначим через u k долю серверов, у которых заявок k или больше. Значения u k можно легко получить через f k и наоборот:

Понятно что u 0 1 Представим что система находится в равновесии Тогда у - фото 64

Понятно, что u 0= 1.

Представим, что система находится в равновесии. Тогда у нас в среднем

серверов на которых ровно k заданий Все эти серверы обрабатывают задания со - фото 65

серверов, на которых ровно k заданий. Все эти серверы обрабатывают задания со скоростью одно задание в единицу времени. Другими словами, количество серверов с k заявками или больше уменьшается на n ( u ku k+1 ) в единицу времени.

Теперь давайте посмотрим, на сколько количество серверов с k заявками или больше увеличивается в единицу времени. Чтобы увеличить число таких серверов, заявки должны поступать на серверы, у которых в данный момент k − 1 заявка. При методе выбора из двух вероятность того, что новое задание попадет на сервер с k или больше заявками, равна

потому что в этом случае оба случайно и независимо выбранных сервера должны - фото 66

потому что в этом случае оба случайно и независимо выбранных сервера должны иметь k или больше заявок, и для каждого из двух серверов эта вероятность и k [26]. Значит, вероятность того, что новая заявка поступит на сервер, у которого ровно k − 1 заявка, равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»

Представляем Вашему вниманию похожие книги на «Кому нужна математика? Понятная книга о том, как устроен цифровой мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Кому нужна математика? Понятная книга о том, как устроен цифровой мир»

Обсуждение, отзывы о книге «Кому нужна математика? Понятная книга о том, как устроен цифровой мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x