( q ( n )) n− 1.
Поскольку всего вершин п, то в среднем число вершин, которые не соединены ребрами ни с одной другой вершиной, составит
n ( q ( n )) n− 1.
Возьмем, как и прежде,
Вспомните один известный замечательный предел
где е – основание натурального логарифма. Интуитивно результат следует из похожего предельного перехода:
Давайте посмотрим, о чем нам говорит эта формула.
Если c < 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к бесконечности. В этом случае таких вершин будет очень много, связность сети с большой вероятностью будет потеряна.
Если c > 1, то в среднем число вершин, у которых нет ни одного ребра, стремится к нулю. Значит, с большой вероятностью таких вершин не будет и связность сети сохранится.
Таким образом, мы видим, откуда появляется фазовый переход!
Наконец, если c = 1, то в среднем число вершин, у которых нет ни одного ребра, равно единице. Заметим, что единица – это среднее значение, а в реальности таких вершин может быть 0, 1, 2… Можно доказать, что соответствующее распределение вероятности близко к закону Пуассона с параметром 1:
Соответственно, вероятность того, что таких вершин не будет, то есть связность сети сохранится, равна е –1.
Добавим, что это еще не строгое доказательство, потому что мы проанализировали только среднее количество вершин, у которых нет ни одного ребра. Для завершения доказательства нужно еще показать, что в случае c < 1 и c > 1 число вершин без ребер относительно м а ло отклоняется от среднего значения. Для этого разработаны стандартные методы, в частности, основанные на неравенствах Маркова и Чебышева. Эти неравенства названы в честь замечательных русских математиков, стоявших у истоков теории вероятностей.
Назад к Главе 4
Анализ метода выбора из двух
Допустим, у нас n серверов. Заявки (или задания) поступают с интенсивностью λ n в единицу времени, и каждый сервер в среднем обрабатывает одно задание в единицу времени, то есть загрузка системы равна λ < 1 (если λ ≥1, то система перегружена, очередь будет расти до бесконечности). Рассмотрим случай, когда n очень велико и стремится к бесконечности.
Обозначим через f k долю серверов, у которых ровно k заявок (заявка, которая находится на обслуживании в данный момент, тоже учитывается). Обозначим через u k долю серверов, у которых заявок k или больше. Значения u k можно легко получить через f k и наоборот:
Понятно, что u 0= 1.
Представим, что система находится в равновесии. Тогда у нас в среднем
серверов, на которых ровно k заданий. Все эти серверы обрабатывают задания со скоростью одно задание в единицу времени. Другими словами, количество серверов с k заявками или больше уменьшается на n ( u k − u k+1 ) в единицу времени.
Теперь давайте посмотрим, на сколько количество серверов с k заявками или больше увеличивается в единицу времени. Чтобы увеличить число таких серверов, заявки должны поступать на серверы, у которых в данный момент k − 1 заявка. При методе выбора из двух вероятность того, что новое задание попадет на сервер с k или больше заявками, равна
потому что в этом случае оба случайно и независимо выбранных сервера должны иметь k или больше заявок, и для каждого из двух серверов эта вероятность и k [26]. Значит, вероятность того, что новая заявка поступит на сервер, у которого ровно k − 1 заявка, равна
Читать дальше
Конец ознакомительного отрывка
Купить книгу