Так как Каратак видит только красные шляпы, мы можем исключить вариант 2. А теперь представьте, что вариант 3 верен и у Каратака зеленая шляпа. Предположим, это действительно так, и проанализируем вопрос снова. Альгернон увидел бы зеленую и красную шляпу, после чего пришел бы к выводу, что не знает, какого цвета его шляпа. Бальтазар видит, что у Каратака зеленая шляпа. Исходя из того что Альгернон не знает цвета своей шляпы, Бальтазар может исключить, что у него самого зеленая шляпа, поскольку если бы это было так, то Альгернон сказал бы, что знает цвет своей шляпы! Таким образом, Бальтазар узнает, что у него красная шляпа, а в этом случае он не может сказать, что не знает цвета своей шляпы. Предположение о том, что вариант 3 верен, приводит нас к противоречию, следовательно, на самом деле верен вариант 1: у Каратака красная шляпа.
К тексту
20. ПОСЛЕДОВАТЕЛЬНЫЕ ЧИСЛА
Для того чтобы решить эту головоломку, мы будем использовать определенную информацию из каждого утверждения, постепенно сокращая количество возможных чисел, которые мог выбрать Зебеди.
Итак, мы имеем числа 1, 2, 3, 4, 5… Если у Ксанфа число 1, то при условии, что числа следуют друг за другом, он понимает, что у Иветт должно быть число 2. Следовательно, у Ксанфа не может быть число 1, и мы вычеркиваем его из списка. Если же у Ксанфа число 2, то у Иветт могло бы быть число 1 или 3, и в этом случае он не знал бы число Иветт. Аналогично для каждого числа больше 2 всегда допускается возможность, что число Иветт на единицу меньше или на единицу больше. Таким образом, все, что нам становится известно из первого утверждения, что число Ксанфа – 2 или больше.
У Иветт не может быть число 1 по той же причине, о которой шла речь выше. Но может ли у нее быть число 2? Если у Иветт число 2, то она знает, что у Ксанфа должно быть либо число 1, либо число 3. Однако, будучи превосходным логиком, она пришла к выводу, что у Ксанфа не число 1. Значит, если у Иветт число 2, ей известно, что у Ксанфа должно быть число 3, но это противоречит ее собственному утверждению, что она не знает число Ксанфа. Стало быть, можно вычеркнуть 2 из списка Иветт. Если у Иветт число 3 или больше, то верно ее утверждение о том, что она не знает число Ксанфа, поскольку, если рассуждать логически, у Ксанфа может быть число Иветт плюс или минус один.
В общем, нам известно, что у Ксанфа одно из чисел 2, 3, 4, 5, 6…, а у Иветт одно из чисел 3, 4, 5, 6, 7…
Теперь Ксанфа говорит, что знает число. Если у него число 2, то, насколько ему известно, у Иветт число 3. Если же у нее число 3, то она понимает, что у Иветт должно быть число 4. Если у Ксанфа число 4, то у Иветт может быть число 3 или 5, а значит, Ксанф не знает число. То же самое можно сказать о числах больше числа 4. Другими словами, для того чтобы утверждение Ксанфа о том, что ему известно число Иветт, соответствовало действительности, у него должно быть либо число 2, либо число 3.
Если у Ксанфа число 2 либо 3, то у Иветт должно быть либо число 3, либо число 4, потому что числа Зебеди последовательные. Таким образом, Зебеди шепнул им на ухо либо числа 2 и 3, либо числа 3 и 4. И мы можем сделать вывод, что одним из его чисел определенно было число 3.
К тексту
21. ДЕНЬ РОЖДЕНИЯ ШЕРИЛ
Шерил перечисляет возможные даты дня своего рождения, а затем сообщает Альберту месяц, которым может быть май, июнь, июль или август. Кроме того, она называет Бернарду день, то есть 14, 15, 16, 17, 18 или 19-е число. В каждой строке диалога содержатся сведения, которые позволят исключить определенные месяцы или числа; в конце будут исключены все варианты, кроме одного.
Альберт говорит, что не знает, когда у Шерил день рождения, но знает, что Бернард тоже этого не знает.
Каждый месяц появляется в списке Шерил по меньшей мере два раза, а значит, какой бы месяц она ни назвала Альберту, существует выбор минимум из двух чисел рождения. Следовательно, Альберт не знает, когда у Шерил день рождения. Первая часть его сообщения избыточна.
Чтобы Альберт знал, что Бернарду неизвестна дата рождения Шерил, он должен быть уверен, что Бернард не держит в уме число, которое появляется в списке только один раз. Речь идет о числах 18 и 19. Если бы Бернарду назвали какое-то из этих чисел, он смог бы дедуктивным методом определить день рождения Шерил. Альберт может быть убежден, что Шерил назвала Бернарду не числа 18 или 19, лишь в том случае, если она назвала ему (Альберту) месяц без этих чисел. Стало быть, мы можем исключить месяцы с датами 18 и 19, а это май и июнь. Должно быть, Шерил назвала Альберту июль или август.
Читать дальше
Конец ознакомительного отрывка
Купить книгу