Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Здесь есть возможность читать онлайн «Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Манн, Иванов и Фербер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4. Человек обходит Солнце, длина окружности которого равна около 4,4 миллиона километров. Насколько большее расстояние пройдет его голова по сравнению с ногами?

Во всех этих случаях ответ – всего 11 метров (разумеется, без учета сопутствующих физических препятствий). Аналогично, если бы веревка опоясывала атом, мяч, Юпитер или Солнце, увеличения ее длины на 1 метр было бы достаточно для ее поднятия на 16 сантиметров. Просто поразительно!

Уильям Уистон пробыл на должности лукасовского профессора всего восемь лет до того, как был изгнан из Кембриджского университета за еретические воззрения (он отвергал идею Святой Троицы, утверждая, что Иисус не равен Богу). Уистон так и не вернулся в мир университетской науки; он читал лекции по математике и естественным наукам в лондонских кафе, в ходе которых часто отвлекался на религиозную полемику.

Самый крупный вклад Уистона в науку связан с той ролью, которую он сыграл в последующем принятии закона о долготе. Он убеждал британское правительство объявить о денежном вознаграждении тому, кто найдет способ определять координату долготы судна в море, и создать для этих целей специальную комиссию. Уинстон надеялся выиграть эти деньги, но все его попытки решить поставленную задачу потерпели неудачу. Поэтому вполне уместным кажется то, что самым крупным вкладом этого ученого в математическую науку стала головоломка о путешествии вокруг Земли.

Я отдаю предпочтение задаче Уистона, в которой человек обходит земной шар, чем ее более поздней версии, где веревка парит над землей, поскольку, несмотря на очевидную абсурдность обеих ситуаций, первый сценарий кажется менее надуманным. Если бы такая веревка действительно существовала и вы бы удлинили ее на 1 метр, то, прежде чем думать о том, как поднять ее в воздух по всей длине, вы потянули бы веревку вверх в одной точке, чтобы посмотреть, на какую высоту она поднимется. Особенно если бы цель состояла в том, чтобы провести под веревкой какое-нибудь животное!

Новая задача

5. Допустим, у вас есть веревка, натянутая вокруг земного шара, и вы удлинили ее на 1 метр. Поднимайте веревку вверх в одной точке до тех пор, пока она не натянется. На какую высоту она поднялась? Какое животное сможет под ней пройти?

Не пытайтесь решить задачу, поскольку это по силам только людям с определенным уровнем математической подготовки. Я привел ее исключительно из-за оригинального решения. Попробуйте догадаться, как это делается, а затем сверьтесь с ответами в конце книги. Но сначала все же решите следующую задачу.

Подсказка: вам понадобится знание теоремы Пифагора, которая гласит, что во всех прямоугольных треугольниках квадрат гипотенузы равен сумме квадратов двух катетов. (Гипотенуза – это сторона, расположенная напротив прямого угла.) Но вы ведь это знаете, не так ли?

Ответ 28 ГИРЛЯНДА ИЗ ФЛАЖКОВ ДЛЯ УЛИЧНОГО ПРАЗДНИКА На вашей улице длиной от - фото 27

Ответ

28. ГИРЛЯНДА ИЗ ФЛАЖКОВ ДЛЯ УЛИЧНОГО ПРАЗДНИКА

На вашей улице длиной (от начала до конца) 100 метров будет проходить праздник. У вас есть 101-метровая гирлянда из флажков. Один ее конец вы прикрепляете к основанию фонарного столба в начале улицы, а другой – на расстоянии 100 метров у основания фонарного столба в конце улицы; середину гирлянды крепите к верхушке шеста, расположенного на полпути вниз по улице.

Какова высота шеста, если исходить из того, что гирлянда не провисает и не растягивается?

Следующие три головоломки касаются поведения катящихся кругов. Если вы никогда не размышляли над такими идеями, то ваша голова может пойти кругом. Однако я гарантирую, что ответы приведут вас в полный восторг. Вероятно, эти головоломки станут понятнее, если побывать в Японии.

«Начала» сделали Евклида выдающимся логиком, корифеем строгого дедуктивного мышления. Сегодня это звание разделяет, а может, даже затмевает Шерлок Холмс.

Вымышленный детектив стремился к евклидовой строгости («Сколько раз я говорил вам: “Отбросьте все невозможное, а то, что останется, и будет ответом, каким бы невероятным он ни казался”?»), но не был столь же силен в математике.

В одном из первых дел Шерлока Холмса под названием «Случай в интернате», изучив отпечатки велосипедных шин, сыщик делает вывод о том, куда направился велосипед. Он объясняет Ватсону ход своих рассуждений: «Отпечаток заднего колеса всегда глубже, потому что на него приходится б о льшая тяжесть. Вот, видите? В нескольких местах он совпал с менее ясным отпечатком переднего и уничтожил его. Нет, велосипедист, несомненно, ехал от школы».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»

Представляем Вашему вниманию похожие книги на «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алекс Беллос
Отзывы о книге «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»

Обсуждение, отзывы о книге «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x