Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Каждому из этих рядов Σ соответствует точка пространства: таким образом, двум рядам Σ и Σ’ будут соответствовать две точки M и М’ . Средства, которыми мы располагаем до сих пор, позволяют нам узнать, что M и М’ неразличимы в двух случаях: 1) если Σ тождествен с Σ’; 2) если Σ’ = Σ + S + S’ , причем S и S’ взаимно обратимы. Если бы во всех других случаях мы считали M и М’ различными, то совокупность точек имела бы столько измерений, сколько и совокупность различных рядов Σ, т. е. гораздо больше 3.

Для тех, кто уже знаком с геометрией, легко было бы уяснить это следующим образом. Между рядами мыслимых мускульных ощущений есть такие, которые соответствуют рядам движений, при которых палец не шевелится. Я говорю, что если не считать различными ряды Σ и Σ + σ, где ряд σ соответствует таким движениям, при которых палец не шевелится, то совокупность рядов составит непрерывность трех измерений, но если ряды Σ и Σ’ считать различными, исключая тот случай, когда Σ’ = Σ + S + S’ , где S и S’ обратимы, то совокупность рядов составит непрерывность более чем трех измерений.

В самом деле, пусть мы имеем в пространстве поверхность A , на этой поверхности линию B , на этой линии точку M ; пусть C 0– совокупность всех рядов Σ; пусть C 1– совокупность всех таких рядов Σ, что в конце соответствующих движений палец находится на поверхности A ; пусть также CC 3– совокупности таких рядов Σ, что в конце палец оказывается на B и в M . Прежде всего, ясно, что C 1составит купюру, которая разделит C 0, и что C 2будет купюрой, которая разделит C 1, и C 3– купюра, которая разделит C 2. Отсюда следует, по нашим определениям, что если C 3есть непрерывность n измерений, то C 0будет физической непрерывностью n + 3 измерений.

Пусть же Σ и Σ’ = Σ + σ будут два ряда, входящие в состав C 3; для обоих в конце движений палец находится в M ; отсюда следует, что в начале и в конце ряда σ палец находится в той же точке M ; следовательно, ряд σ – один из тех рядов, которые соответствуют движениям, когда палец не шевелится. Если Σ и Σ + σ не считать различными, то все ряды C 3сольются в один, поэтому C 3будет иметь 0 измерений и C 0, как я хотел доказать, будет иметь 3 измерения. Если же, напротив, Σ и Σ + σ я не считаю сливающимися (исключая тот случай, когда σ = S + S’ , где S и S’ обратимы), то ясно, что C 3будет содержать в себе множество рядов различных ощущений, ибо при полной неподвижности пальца тело может принимать много различных положений. Тогда C 3образует непрерывность и C 0будет иметь более трех измерений, а это я и хотел доказать.

Не будучи еще знакомы с геометрией, мы не можем рассуждать таким образом; мы можем только констатировать. Но тогда возникает вопрос, как, еще не зная геометрии, мы научились отличать от других те ряды σ, где палец остается неподвижным; ведь в самом деле, только установив это различие, мы получим возможность рассматривать Σ и Σ + σ как тождественные, а только при таком условии, как мы видели, можно прийти к пространству трех измерений.

Мы научились различать ряды σ, потому что часто бывает, что когда мы совершили движения, которые соответствуют этим рядам мускульных ощущений σ, тогда осязательные ощущения, переданные нам нервом пальца, который мы назвали первым пальцем, продолжаются, и эти движения не изменяют их. Опыт учит нас этому, и только он один мог научить нас этому.

Ряды мускульных ощущений S + S’ , образованные соединением двух обратных рядов, мы отличали потому, что они сохраняли совокупность наших впечатлений; если теперь мы различаем ряды σ, так это потому, что они сохраняют некоторые из наших впечатлений. (Когда я говорю, что ряд мускульных ощущений S «сохраняет» одно из наших впечатлений A , то я хочу сказать, что мы устанавливаем, что если испытываем впечатление A , а потом мускульные ощущения S , то мы еще будем испытывать впечатление A после этих ощущений S .)

Выше я сказал – часто бывает, что ряды σ не изменяют осязательных впечатлений, испытываемых нашим первым пальцем; я сказал – часто , но не сказал – всегда ; это мы выражаем на нашем обычном языке, говоря, что осязательное впечатление не изменилось бы, если бы палец не пошевелился, при условии , что предмет A , который соприкасался с этим пальцем, также не пошевелился. Ранее знакомства с геометрией мы не можем дать этого объяснения; мы, можем только констатировать, что впечатление удерживается часто, но не всегда.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x