Я хорошо знаю, что легко отделаться от этого; если факты не подтверждаются, то это легко объяснить тем, что внешние предметы не остались неподвижными. Если опыт удается, то говорят, что он дает нам сведения о пространстве; если он не удается, то сваливают вину на внешние предметы, говоря, что они не остались неподвижными; другими словами, если он не удается, то применяют искусственный прием.
Эти ухищрения законны; я вполне согласен с этим; но раз они есть, то мы знаем, что свойства пространства не суть экспериментальные истины в собственном смысле этого слова. Если бы мы захотели оправдать другие законы, то могли бы также достигнуть этого, пользуясь другими аналогичными ухищрениями. Разве мы не могли бы всегда оправдывать эти ухищрения теми же самыми доводами? В крайнем случае нам могли бы сказать: «ваши ухищрения, без сомнения, законны, но вы злоупотребляете ими; к чему так часто заставлять двигаться внешние предметы?»
Словом, опыт не доказывает нам, что пространство имеет три измерения; он доказывает, что удобно приписывать ему три измерения, потому что именно таким образом число ухищрений сводится к минимуму.
Прибавлю, что опыт всегда заставлял нас приходить в соприкосновение только с пространством представлений, которое является физической непрерывностью, а не с геометрическим пространством, которое есть непрерывность математическая. Самое большее, он мог бы научить нас, что удобно наделять геометрическое пространство тремя измерениями, чтобы оно имело столько же измерений, сколько и пространство представлений.
Эмпирический вопрос может представиться в другом виде. Можно ли воспринимать явления физические, например механические явления, иначе, чем в пространстве трех измерений? Если нет, то мы имели бы, таким образом, объективное экспериментальное доказательство, так сказать, не зависящее от нашей физиологии, от наших способов представления.
Но это не так; я не стану рассматривать здесь вопрос полностью, а ограничусь тем, что напомню разительный пример, который дает нам механика Герца.
Известно, что великий физик не верил в существование сил в собственном смысле слова; он полагал, что видимые материальные точки подчинены некоторым невидимым связям, соединяющим их с другими невидимыми точками и что именно действие этих невидимых связей мы и приписываем силам.
Но это только одна часть его идей. Вообразим систему, составленную из n материальных – видимых или невидимых – точек; это даст всего-навсего 3n координат; будем рассматривать их как координаты единственной точки в пространстве 3n измерений. Эта единственная точка была бы принуждена оставаться на поверхности (какого-нибудь числа измерений, которое меньше 3n) в силу тех связей, о которых мы только что говорили; для того чтобы передвинуться на этой поверхности с одного места на другое, точка всегда избирала бы кратчайший путь; это был бы единственный принцип, который резюмировал бы всю механику.
Что бы ни думать об этой гипотезе – прельщаться ли ее простотой, возмущаться ли ее искусственностью, – достаточно одного того факта, что Герц мог придумать ее и считать ее более удобной, чем наши обычные гипотезы, чтобы доказать, что наши обычные идеи, и в частности три измерения пространства, ничуть не необходимо навязываются механику.
6. Ум и пространство
Следовательно, опыт сыграл только одну роль, он послужил поводом. Но тем не менее эта роль была очень важна, и я счел необходимым отметить ее. Эта роль была бы бесполезна, если бы существовала априорная форма, налагаемая на наше чувственное восприятие в виде пространства трех измерений.
Существует ли эта форма, или, если угодно, можем ли мы представить себе пространство более чем трех измерений? И, прежде всего, что означает этот вопрос? В прямом смысле слова ясно, что мы не можем представить себе ни пространства четырех, ни пространства трех измерений; прежде всего, мы не можем представить себе их пустыми, и так же мы не можем представить себе какой-нибудь предмет ни в пространстве четырех, ни в пространстве трех измерений: 1) потому что оба эти пространства бесконечны, и мы не могли бы представить себе фигуру в пространстве, т. е. часть в целом, не представляя себе целого, а это невозможно, потому что это целое бесконечно; 2) потому что оба эти пространства суть математические непрерывности, а мы можем представить себе только физическую непрерывность; 3) потому что оба эти пространства однородны, а те кадры, в которые мы заключаем наши ощущения, будучи ограниченными, не могут быть однородными.
Читать дальше
Конец ознакомительного отрывка
Купить книгу