Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но раз мы еще не знакомы с геометрией, мы не можем рассуждать так; мы можем только констатировать опытным путем, что может быть выполнено первое условие, относящееся к зрению, без выполнения второго условия, относящегося к осязанию, но что второе условие не может быть выполнено без того, чтобы не было выполнено первое.

Предположим, что опыт научил бы нас противоположному. Это возможно, и в этом предположении нет ничего нелепого. Итак, пусть мы констатировали опытным путем, что условие, относящееся к осязанию, может быть выполнено, хотя не выполнено условие зрения, и что, напротив, условие зрения не может быть выполнено без того, чтобы не было выполнено условие осязания. Ясно, что если бы это было так, то мы пришли бы к заключению, что осязание может действовать на расстоянии, а зрение на расстоянии не действует.

Но это не все; до сих пор я предполагал, что для определения места предмета я пользуюсь только глазом и одним пальцем; но совершенно так же я мог бы воспользоваться и другими средствами, например всеми другими моими пальцами.

Я предполагаю, что мой первый палец получает в момент α осязательное впечатление, которое я приписываю предмету A . Я делаю ряд движений, соответствующий ряду мускульных ощущений S . Следом за этими движениями в момент α’ мой второй палец получает осязательное впечатление, которое я приписываю также A . Потом в момент β, в то время как я остаюсь неподвижным, о чем мне дает знать мое мускульное чувство, тот же самый второй палец опять передает мне осязательное впечатление, которое я приписываю на этот раз предмету B ; затем я делаю ряд движений, соответствующий ряду мускульных ощущений S’ . Я знаю, что этот ряд S’ есть обратный ряду S и соответствует противоположным движениям. Я знаю это потому, что многократные прежние опыты часто показывали мне, что если я последовательно делаю два ряда движений, соответствующие S и S’ , то первоначальные впечатления восстанавливаются, т. е. два ряда взаимно компенсируются. Если так, то должен ли я надеяться, что в момент β , когда окончится второй ряд движений, мой первый палец получит осязательное впечатление, приписываемое предмету B ?

Чтобы ответить на этот вопрос, тот, кто был уже знаком с геометрией, стал бы рассуждать таким образом. Есть вероятность, что предмет A не пошевелился между моментами α и α’, а также предмет B – между моментами β и β’; допустим это. В момент α предмет A занимал некоторую точку пространства M . Но в этот момент он касался моего первого пальца, и так как осязание не действует на расстоянии , то мой первый палец был также в точке М . Затем я сделал ряд движений S и в конце этого ряда в момент α’ констатировал, что предмет A касается моего второго пальца. Я заключил отсюда, что этот второй палец находился тогда в M , т. е. что движениями S второй палец был приведен на место первого. В момент β предмет B пришел в соприкосновение с моим вторым пальцем; так как я не шевелился, то этот второй палец остался в M ; поэтому предмет B пришел в M ; по предположению он не двигается до момента β’. Но между моментами β и β’ я сделал движения S’ ; так как эти движения обратны движениям S , то они должны в результате привести первый палец на место второго. В момент β’ первый палец, следовательно, будет в M ; и так как предмет B также находится в M , то этот предмет B коснется моего первого пальца. Таким образом, на предложенный вопрос надо ответить утвердительно.

Мы, не знакомые еще с геометрией, не можем рассуждать таким образом, но мы констатируем, что это предположение обыкновенно осуществляется, а исключения мы всегда можем объяснить тем, что предмет A между моментами α и α’ или предмет B между моментами β и β’ пошевелился.

Но не мог ли бы опыт дать противоположный результат – и явился ли бы этот последний сам по себе нелепым? Очевидно, нет. Как бы мы поступили в том случае, если бы опыт дал этот противоположный результат? Сделалась ли бы невозможной всякая геометрия? Ничуть! Мы ограничились бы заключением, что осязание может действовать на расстоянии .

Когда я говорю, что осязание не действует на расстоянии, зрение же действует на расстоянии, то это утверждение имеет только следующий смысл. Для того чтобы узнать, занимает ли B в момент β точку, которую занимал A в момент α, я могу пользоваться множеством различных критериев; в один входит мой глаз; в другой – мой первый палец, в третий – мой второй палец и т. д. Так вот, достаточно, чтобы критерий, относящийся к одному из моих пальцев, был удовлетворен, чтобы были удовлетворены все прочие критерии; но этого не достаточно, чтобы был удовлетворен критерий, относящийся к глазу. Вот смысл моего утверждения; я ограничиваюсь утверждением экспериментального факта, который обыкновенно подтверждается.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x