Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если, по установлении этих определений, непрерывность C может быть разделена купюрами, которые сами не образуют непрерывность, то эта непрерывность C имеет только одно измерение; в противном случае она имеет несколько измерений. Если для того, чтобы разделить C , достаточно купюры, образующей непрерывность одного измерения, то C будет иметь два измерения; если достаточно купюры, образующей непрерывность двух измерений, то C будет иметь три измерения, и т. д.

Благодаря этим определениям всегда можно будет узнать, сколько измерений имеет любая физическая непрерывность. Остается только найти физическую непрерывность, которая была бы, так сказать, эквивалентна пространству так, чтобы каждой точке пространства соответствовал элемент этой непрерывности и чтобы точкам пространства, очень близким друг к другу, соответствовали неразличимые элементы. Тогда пространство будет иметь столько измерений, сколько и эта непрерывность.

Переход через эту физическую непрерывность, доступную представлению, неизбежен, потому что мы не можем представить себе пространство, и это по многим основаниям. Пространство есть математическая непрерывность, оно бесконечно, а мы можем представлять себе только физические непрерывности и конечные предметы. Различные элементы пространства, которые мы называем точками, все сходны между собой, а для того чтобы применить наше определение, нам нужно уметь отличать один элемент от другого, по крайней мере если они не слишком близки. Наконец, абсолютное пространство есть бессмыслица, и нам с самого начала приходится относить его к системе осей, неизменно связанных с нашим телом (которое мы должны предполагать всегда приведенным в одно и то же положение).

Затем я постарался образовать с помощью наших зрительных ощущений эквивалентную пространству физическую непрерывность; это, без сомнения, легко, и этот пример в особенности пригоден для исследования числа измерений; это исследование дало нам возможность видеть, в какой степени можно говорить, что «визуальное пространство» имеет три измерения. Однако это решение не полно и искусственно – я уже объяснил почему, и не к визуальному, а к моторному пространству надо нам приложить свои усилия.

Потом я напомнил, каково происхождение различия, которое мы делаем между изменениями положения и изменениями состояния.

Среди изменений, происходящих в наших впечатлениях, мы различаем сначала изменения внутренние – волевые и сопровождающиеся мускульными ощущениями – и изменения внешние, характер которых противоположен.

Мы констатируем возможность того, что внешнее изменение будет исправляться внутренним изменением, которое восстанавливает начальные ощущения. Внешние изменения, которые можно исправить посредством внутреннего изменения, называются изменениями положения; внешние изменения, которые нельзя исправить таким образом, называются изменением состояния. Внутренние изменения, способные исправить внешнее изменение, называются перемещениями всего тела; прочие – изменениями позы.

Теперь пусть α и β будут два внешних изменения, α’ и β’ – два внутренних изменения. Положим, что α может быть исправлено или посредством α’, или посредством β’ и что α’ может исправить как α, так и β; тогда опыт учит нас, что и β’ может исправить β. В таком случае мы скажем, что α и β соответствуют одному и тому же перемещению, равно как α’ и β’ соответствуют одному и тому же перемещению.

Если так, то мы можем вообразить физическую непрерывность, которую мы назовем непрерывностью или группой перемещений и которую определим следующим образом. Элементами этой непрерывности будут внутренние изменения, способные исправить внешнее изменение. Два из этих внутренних изменений α’ и β’ будут рассматриваться как неразличимые; 1) если они по природе таковы, т. е. если они слишком близки друг к другу; 2) если α’ может исправить то же самое внешнее изменение, какое исправляется третьим внутренним изменением, по природе неотличимым от β’. Во втором случае они будут неразличимы, так сказать, в силу соглашения, т. е. если условимся не принимать в расчет тех обстоятельств, которые могли бы создать их различие.

Наша непрерывность теперь вполне определена, потому что мы знаем ее элементы и выяснили себе, при каких условиях они могут рассматриваться как неразличимые. Таким образом, мы имеем все, что необходимо для того, чтобы применить наше определение и определить, сколько измерений имеет эта непрерывность. Мы узнаем, что она имеет шесть измерений. Следовательно, непрерывность перемещений не эквивалентна пространству, потому что число измерений здесь другое; она только родственна пространству.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x